Proper control of gene expression is essential for life. While substantial advances have been made in the discovery of DNA sequences and transcription factors that act combinatorial to regulate transcription, much less is known about later steps in the gene expression program. Nevertheless, it is now clear that substantial regulation and gene expression occurs post-transcriptional, in pre-mRNA splicing, RNA transport, RNA localization, translation, and RNA decay, and in the coordination of RNAs by RNA binding proteins (RBPs). Further, recent findings of widespread transcription of noncoding RNAs (ncRNA) and of the involvement of these RNAs in critical biological processes such as development and gene regulation suggest the existence of important classes of regulatory RNAs that we are just beginning to explore. The long term goal of this project is to develop tools that enable structural characterization of RNAs on a genome-wide scale. First, we will develop computational methods to delineate functional motifs in RNA based on predicted secondary structures. Second, we will develop high-throughput methodologies of mapping secondary and tertiary structures in RNA using a series of RNA footprinting techniques and high resolution tiling array technology. Third, we will develop computational and experimental methods to assign biological functions to RNA motifs and to validate them. This integrated pipeline of new experimental and computational tools will enable investigators to identify and decode regulatory RNA elements in the genome with unprecedented speed and precision. The control of gene expression lies at the heart of understanding fundamental biological processes, such as cell growth, differentiation, and death. A deep and comprehensive understanding of the gene expression program would help to reveal the mechanisms of many human diseases exhibiting faulty gene expression, and allow their diagnosis and intervention with newfound precision.

Agency
National Institute of Health (NIH)
Institute
National Human Genome Research Institute (NHGRI)
Type
Research Project (R01)
Project #
5R01HG004361-03
Application #
7684281
Study Section
Special Emphasis Panel (ZHG1-HGR-M (M1))
Program Officer
Good, Peter J
Project Start
2007-09-18
Project End
2011-08-31
Budget Start
2009-09-01
Budget End
2011-08-31
Support Year
3
Fiscal Year
2009
Total Cost
$415,403
Indirect Cost
Name
Stanford University
Department
Dermatology
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Tong, Jiyu; Cao, Guangchao; Zhang, Ting et al. (2018) m6A mRNA methylation sustains Treg suppressive functions. Cell Res 28:253-256
Chen, Lu; Roake, Caitlin M; Freund, Adam et al. (2018) An Activity Switch in Human Telomerase Based on RNA Conformation and Shaped by TCAB1. Cell 174:218-230.e13
Lu, Zhipeng; Chang, Howard Y (2018) The RNA Base-Pairing Problem and Base-Pairing Solutions. Cold Spring Harb Perspect Biol 10:
Lu, Zhipeng; Carter, Ava C; Chang, Howard Y (2017) Mechanistic insights in X-chromosome inactivation. Philos Trans R Soc Lond B Biol Sci 372:
Chen, Y Grace; Kim, Myoungjoo V; Chen, Xingqi et al. (2017) Sensing Self and Foreign Circular RNAs by Intron Identity. Mol Cell 67:228-238.e5
Lee, Byron; Flynn, Ryan A; Kadina, Anastasia et al. (2017) Comparison of SHAPE reagents for mapping RNA structures inside living cells. RNA 23:169-174
Li, Hua-Bing; Tong, Jiyu; Zhu, Shu et al. (2017) m6A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways. Nature 548:338-342
Simsek, Deniz; Tiu, Gerald C; Flynn, Ryan A et al. (2017) The Mammalian Ribo-interactome Reveals Ribosome Functional Diversity and Heterogeneity. Cell 169:1051-1065.e18
Bailey, Alexis S; Batista, Pedro J; Gold, Rebecca S et al. (2017) The conserved RNA helicase YTHDC2 regulates the transition from proliferation to differentiation in the germline. Elife 6:
Tan, Justin L; Fogley, Rachel D; Flynn, Ryan A et al. (2016) Stress from Nucleotide Depletion Activates the Transcriptional Regulator HEXIM1 to Suppress Melanoma. Mol Cell 62:34-46

Showing the most recent 10 out of 48 publications