Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL047599-04
Application #
2223789
Study Section
Pharmacology A Study Section (PHRA)
Project Start
1992-08-01
Project End
1997-02-28
Budget Start
1995-07-01
Budget End
1997-02-28
Support Year
4
Fiscal Year
1995
Total Cost
Indirect Cost
Name
Vanderbilt University Medical Center
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Yang, Zhenjiang; Shen, Wangzhen; Rottman, Jeffrey N et al. (2005) Rapid stimulation causes electrical remodeling in cultured atrial myocytes. J Mol Cell Cardiol 38:299-308
Williams, Christine P; Hu, NingNing; Shen, Wangzhen et al. (2002) Modulation of the human Kv1.5 channel by protein kinase C activation: role of the Kvbeta1.2 subunit. J Pharmacol Exp Ther 302:545-50
Zhou, J; Yi, J; Hu, N et al. (2000) Activation of protein kinase A modulates trafficking of the human cardiac sodium channel in Xenopus oocytes. Circ Res 87:33-8
Franqueza, L; Valenzuela, C; Eck, J et al. (1999) Functional expression of an inactivating potassium channel (Kv4.3) in a mammalian cell line. Cardiovasc Res 41:212-9
Rich, T C; Snyders, D J (1998) Evidence for multiple open and inactivated states of the hKv1.5 delayed rectifier. Biophys J 75:183-95
Uebele, V N; England, S K; Gallagher, D J et al. (1998) Distinct domains of the voltage-gated K+ channel Kv beta 1.3 beta-subunit affect voltage-dependent gating. Am J Physiol 274:C1485-95
Kupershmidt, S; Snyders, D J; Raes, A et al. (1998) A K+ channel splice variant common in human heart lacks a C-terminal domain required for expression of rapidly activating delayed rectifier current. J Biol Chem 273:27231-5
Yang, T; Snyders, D J; Roden, D M (1997) Inhibition of cardiac potassium currents by the vesnarinone analog OPC-18790: comparison with quinidine and dofetilide. J Pharmacol Exp Ther 280:1170-5
Yang, T; Snyders, D J; Roden, D M (1997) Rapid inactivation determines the rectification and [K+]o dependence of the rapid component of the delayed rectifier K+ current in cardiac cells. Circ Res 80:782-9
Yeola, S W; Snyders, D J (1997) Electrophysiological and pharmacological correspondence between Kv4.2 current and rat cardiac transient outward current. Cardiovasc Res 33:540-7

Showing the most recent 10 out of 30 publications