Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL052350-03
Application #
2229681
Study Section
Cardiovascular and Renal Study Section (CVB)
Project Start
1994-04-01
Project End
1997-03-31
Budget Start
1996-04-01
Budget End
1997-03-31
Support Year
3
Fiscal Year
1996
Total Cost
Indirect Cost
Name
Washington University
Department
Pediatrics
Type
Schools of Medicine
DUNS #
062761671
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Boero, J; Qin, W; Cheng, J et al. (2003) Restricted neuronal expression of ubiquitous mitochondrial creatine kinase: changing patterns in development and with increased activity. Mol Cell Biochem 244:69-76
Khuchua, Z; Wozniak, D F; Bardgett, M E et al. (2003) Deletion of the N-terminus of murine map2 by gene targeting disrupts hippocampal ca1 neuron architecture and alters contextual memory. Neuroscience 119:101-11
Shen, W; Tian, R; Saupe, K W et al. (2001) Endogenous nitric oxide enhances coupling between O2 consumption and ATP synthesis in guinea pig hearts. Am J Physiol Heart Circ Physiol 281:H838-46
Cave, A C; Ingwall, J S; Friedrich, J et al. (2000) ATP synthesis during low-flow ischemia: influence of increased glycolytic substrate. Circulation 101:2090-6
Mathur, A; Sims, H F; Gopalakrishnan, D et al. (1999) Molecular heterogeneity in very-long-chain acyl-CoA dehydrogenase deficiency causing pediatric cardiomyopathy and sudden death. Circulation 99:1337-43
Qin, W; Khuchua, Z; Boero, J et al. (1999) Oxidative myocytes of heart and skeletal muscle express abundant sarcomeric mitochondrial creatine kinase. Histochem J 31:357-65
Tian, R; Miao, W; Spindler, M et al. (1999) Long-term expression of protein kinase C in adult mouse hearts improves postischemic recovery. Proc Natl Acad Sci U S A 96:13536-41
Saupe, K W; Spindler, M; Tian, R et al. (1998) Impaired cardiac energetics in mice lacking muscle-specific isoenzymes of creatine kinase. Circ Res 82:898-907
Tian, R (1998) Thermodynamic limitation for the sarcoplasmic reticulum Ca(2+)-ATPase contributes to impaired contractile reserve in hearts. Ann N Y Acad Sci 853:322-4
Tian, R; Halow, J M; Meyer, M et al. (1998) Thermodynamic limitation for Ca2+ handling contributes to decreased contractile reserve in rat hearts. Am J Physiol 275:H2064-71

Showing the most recent 10 out of 15 publications