Pleural fibrosis is the most common toxicologic manifestation of human asbestos-induced disease. Furthermore, asbestos-related pleural fibrosis has important clinical significance, since it can cause pulmonary restriction and is a marker of increased risk for asbestos-related cancers. However, the mechanisms governing asbestos-mediated pleural fibrosis are poorly understood, and there also has been a long-standing controversy regarding the potential of different commercial types of asbestos to cause pleural injury. In this proposal, it is postulated that inhaled asbestos fibers are phagocytized by pleural mesothelial cells and pleural macrophages, which induces upregulation of certain cytokines, chemotactic proteins and adhesion molecules by these cells. To address this hypothesis, the proposed research will have two components: one will entail the use of an animal inhalational model of asbestos exposure and the other will utilize a number of in vitro studies.
The Specific Aims are: (1) to determine, using a rat inhalational model, whether a fiber gradient exists with respect to the phagocytosis of amphibole (crocidolite) versus serpentine (chrysotile) asbestos fibers by pleural mesothelial cells and pleural macrophages, and to determine whether asbestos inhalation enhances pleural macrophage recruitment and activation; (2) to determine whether in vitro exposure of rat pleural mesothelial cells to asbestos fibers induces upregulation of the adhesion proteins, fibronectin and ICAM-I, and the cytokines, interleukin-1, (IL- 1), platelet derived growth factor (PDGF), transforming growth factor-beta (TGF-beta) and monocyte chemoattractant protein-1 (MCP-1); (3) to determine whether in vitro exposure of rat pleural macrophages to asbestos fibers induces upregulation of the adhesion protein, LFA-1, the pro- inflammatory cytokines, tumor necrosis factor-alpha (TNF-alpha) and MCP-1, and the fibroblast growth factors, fibronectin, IL-1, TGF-beta and PDGF; (4) to determine whether in vitro asbestos exposure enhances the adherence of rat pleural macrophages to rat pleural mesothelial cells in the context of adhesion molecule expression. For the in vitro studies, comparisons will be made between the effects of chrysotile and crocidolite asbestos and those of non-fibrogenic control particulates, MMVF11 fibers and carbonyl iron particles. For the inhalational toxicology studies, comparisons will be made between the effects of both types of asbestos inhalation and the effects of sham exposure. The proposed studies have important significance for the pathogenesis of asbestos-induced pleural injury.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
1R01HL054196-01
Application #
2232487
Study Section
Lung Biology and Pathology Study Section (LBPA)
Project Start
1995-09-30
Project End
1996-08-31
Budget Start
1995-09-30
Budget End
1996-08-31
Support Year
1
Fiscal Year
1995
Total Cost
Indirect Cost
Name
Georgetown University
Department
Pathology
Type
Schools of Dentistry
DUNS #
049515844
City
Washington
State
DC
Country
United States
Zip Code
20057
Iwagaki, Akitaka; Choe, Nonghoon; Li, Yingyue et al. (2003) Asbestos inhalation induces tyrosine nitration associated with extracellular signal-regulated kinase 1/2 activation in the rat lung. Am J Respir Cell Mol Biol 28:51-60
Kagan, E (2001) Bioregulators as instruments of terror. Clin Lab Med 21:607-18, ix-x
Zhang, P; Wang, Y Z; Kagan, E et al. (2000) Peroxynitrite targets the epidermal growth factor receptor, Raf-1, and MEK independently to activate MAPK. J Biol Chem 275:22479-86
Tanaka, S; Choe, N; Iwagaki, A et al. (2000) Asbestos exposure induces MCP-1 secretion by pleural mesothelial cells. Exp Lung Res 26:241-55
Choe, N; Zhang, J; Iwagaki, A et al. (1999) Asbestos exposure upregulates the adhesion of pleural leukocytes to pleural mesothelial cells via VCAM-1. Am J Physiol 277:L292-300
Tanaka, S; Choe, N; Hemenway, D R et al. (1998) Asbestos inhalation induces reactive nitrogen species and nitrotyrosine formation in the lungs and pleura of the rat. J Clin Invest 102:445-54
Choe, N; Tanaka, S; Kagan, E (1998) Asbestos fibers and interleukin-1 upregulate the formation of reactive nitrogen species in rat pleural mesothelial cells. Am J Respir Cell Mol Biol 19:226-36
Choe, N; Tanaka, S; Xia, W et al. (1997) Pleural macrophage recruitment and activation in asbestos-induced pleural injury. Environ Health Perspect 105 Suppl 5:1257-60