Recent studies suggest that chronic exposure to hypoxia causes upregulation of both endothelial and inducible nitric oxide synthase (eNOS and iNOS, respectively) within the lung. Responses to endothelium-derived NO (EDNO)-dependent dilators are enhanced the arterial vasculature of the lung under hypoxic conditions. However, the mechanisms by which eNOS and iNOS gene expression are increased in hypoxia-induced pulmonary hypertension are unclear. The two most likely possibilities are: 1) a direct effect of hypoxia on gene expression; or 2) an effect of altered mechanical forces secondary to pulmonary hypertension. In regulation of pulmonary NO and endothelin biosynthesis under these clinically relevant conditions.
The specific aims are:
Specific Aim 1 - Determine whether hypoxia per se or pulmonary hypertension is responsible for altered vasoreactivity and upregulation of eNOS and iNOS in lungs from chronically hypoxic rats;
Specific Aim 2 - Determine whether pulmonary hypertension in the absence of hypoxia alters pulmonary vascular reactivity and expression of eNOS and iNOS;
Specific Aim 3 - Determine the roles of increased shear stress, hypoxia and endothelin on eNOS and iNOS expression in cultured cells and in isolated arteries;
and Specific Aim 4 - Examine the potential in vivo interactions between the endothelin and NOS systems in hypoxia-induced pulmonary hypertension. The proposed experiments utilize a variety of in vivo and in vitro approaches to examine questions central to the regulation of the pulmonary circulation under clinically relevant conditions.
Showing the most recent 10 out of 43 publications