The mature mammalian myocardium can be divided conceptually into two interdependent cellular compartments. The contractile compartment, made-up of cardiac myocytes, and the interstitial compartment made-up predominantly by cardiac fibroblasts. Although initially thought to serve a predominantly """"""""structural"""""""" role in myocardial function, the cells and extracellular matrix (ECM) of the interstitial compartment have been increasingly found to play an active role in both normal and abnormal myocardial growth. In contrast to the cardiac myocyte, whose replicative capacity is limited in the adult heart, the cardiac fibroblast retains the ability to proliferate and does so in response to many pathologic circumstances. The cardiac fibroblast is the major source of both EMC production and many of the cytokines with potent effects on myocyte growth, fibroblast proliferation, and matrix homeostasis. As such, understanding the mechanisms of fibroblast growth control could lead to novel therapeutic approaches to myocardial disease states. Indeed, recent large scale trials of both interventional (i.e. PTCA) and pharmacologic (i.e. ACE inhibitors) interventions after myocardial injury have provided compelling evidence that the degree of hemodynamic compromise is related to the extent of interstitial """"""""remodeling"""""""" that occurs. Despite the obvious importance of the cardiac fibroblast in myocardial repair, however, there is little information available on either the kinetics of the fibroblast cell cycle, or the factors that regulate its initiation. In order for the cardiac fibroblast to become such a """"""""target"""""""" for therapeutic manipulation, however, the fundamental mechanisms that regulate its entry into and exit from the cell cycle must be identified. The overall hypothesis being examined is that interleukin-1 beta (IL-1 beta), a cytokine produced locally in response to myocardial injury, plays an important role in the subsequent repair and remodeling of the cardiac interstitium. This conclusion is based upon both historical data on cytokine and ECM gene expression during myocardial repair, and our investigations indicating that IL-1 beta has potent effects on cardiac fibroblast proliferation. The specific hypothesis being tested in the work proposed is that IL-1 beta prohibits fibroblast entry into the cell cycle by activating the p27KIP1 kinase inhibitor. To address this hypothesis several Specific Aims have been identified: 1) Determine the universal nature of the IL-1 beta inhibition of fibroblast proliferation, 2) Fully characterize the cell cycle-specific targets of IL-1 beta action on cardiac fibroblast proliferation, 3) Identify the role of cyclin dependent kinase inhibitors in the IL-1 beta-mediated effect, 4) Characterize the post-receptor signaling pathway responsible for IL-1 beta inhibition, and 5) Determine the characteristics of fibroblast cell cycle kinetics and gene expression in an in vivo model of post-infarction myocardial injury.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL059428-04
Application #
6125855
Study Section
Cardiovascular and Pulmonary Research A Study Section (CVA)
Project Start
1997-12-22
Project End
2000-11-30
Budget Start
1999-12-01
Budget End
2000-11-30
Support Year
4
Fiscal Year
2000
Total Cost
$194,216
Indirect Cost
Name
University of Colorado Denver
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
065391526
City
Aurora
State
CO
Country
United States
Zip Code
80045
Brown, R Dale; Ambler, S Kelly; Li, Min et al. (2013) MAP kinase kinase kinase-2 (MEKK2) regulates hypertrophic remodeling of the right ventricle in hypoxia-induced pulmonary hypertension. Am J Physiol Heart Circ Physiol 304:H269-81
Jeong, Mark Y; Walker, John S; Brown, R Dale et al. (2010) AFos inhibits phenylephrine-mediated contractile dysfunction by altering phospholamban phosphorylation. Am J Physiol Heart Circ Physiol 298:H1719-26
Miyamoto, Shelley D; Brown, R D; Robinson, Bridget A et al. (2009) Cardiac cell-specific apoptotic and cytokine responses to reovirus infection: determinants of myocarditic phenotype. J Card Fail 15:529-39
Mitchell, M Darren; Laird, Rebecca E; Brown, R Dale et al. (2007) IL-1beta stimulates rat cardiac fibroblast migration via MAP kinase pathways. Am J Physiol Heart Circ Physiol 292:H1139-47
Brown, R Dale; Ambler, S Kelly; Mitchell, M Darren et al. (2005) The cardiac fibroblast: therapeutic target in myocardial remodeling and failure. Annu Rev Pharmacol Toxicol 45:657-87
Long, C S (2001) The role of interleukin-1 in the failing heart. Heart Fail Rev 6:81-94
Koudssi, F; Lopez, J E; Villegas, S et al. (1998) Cardiac fibroblasts arrest at the G1/S restriction point in response to interleukin (IL)-1beta. Evidence for IL-1beta-induced hypophosphorylation of the retinoblastoma protein. J Biol Chem 273:25796-803