The rapidly activating delayed rectifier K- current (IKr), and the human ether-a-go-related gene (HERG) thought to encode it, play a key role in cardiac repolarization, and mutations in HERG cause congenital long QT syndrome (LQT-2). HERG, IKr and LQT-2 will be studied using molecular and electrophysiological techniques in transfected HEK293 cells and native rabbit myocytes.
Specific aim 1 is to study cellular mechanisms of ion channel processing of HERG wild type and LQT-2 mutant channels. We have previously identified normal steps in the processing mechanism for HERG protein as well as abnormal processing for some LQT-2 mutants. We will extend these observations by testing three hypotheses: a) the failure of some LQT-2 mutants to function normally involves defects in multiple processing steps, b) co-expression of the minK or minK-related subunits modifies HERG wild type and LQT-2 protein trafficking, c) co-expression of wild type HERG protein with minK LQT mutations (LQT-5) alters the expression of HERG current. We will identify the steps where this occurs.
Specific aim 2 is to study cell processes that modify HERG protein production and degradation. We will test the hypothesis that LQT-2 mutant proteins are degraded rapidly, compared with wild type HERG protein, which is of particular importance for newly described LQT-2 mutant channels that form functional channels. Such an increased turnover, if demonstrated, would be a novel mechanism for the expression of the LQT-2 phenotype. We will also test the hypothesis that N- linked glycosylation is a determinant of the stability of expressed HERG protein. We will test the effects of temperature as a determinant of the success and efficiency of trafficking of LQT-2 mutant channels to the surface membrane, and we will identify additional cell processes that might modify HERG protein trafficking.
Specific aim 3 is to study the mechanisms of co- assembly of wild type HERG with LQT-2 mutant channel subunits. We will test the hypothesis that protein trafficking abnormalities alter expression of the dominant negative effect. We will test what role, if any, minK, minK-related, and minK mutant (LQT-5) channels have in modifying this. This research will increase our knowledge of molecular mechanisms of ion channel processing and function of HERG and more generally will have implications for all ion channels. More specifically it will have particular relevance to mechanisms of the human disease LQT-2. Elucidating mechanisms in these areas in important in developing new strategies for understanding normal and abnormal arrhythmogenesis and for new strategies for anti-arrhythmic therapies.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
1R01HL060723-01A2
Application #
6045023
Study Section
Cardiovascular and Renal Study Section (CVB)
Project Start
2000-04-01
Project End
2005-03-31
Budget Start
2000-04-01
Budget End
2001-03-31
Support Year
1
Fiscal Year
2000
Total Cost
$228,203
Indirect Cost
Name
University of Wisconsin Madison
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Kamp, Timothy J; January, Craig T (2015) Harry A. Fozzard, MD: 1931–2014. Circ Res 116:552-3
Anderson, Corey L; Kuzmicki, Catherine E; Childs, Ryan R et al. (2014) Large-scale mutational analysis of Kv11.1 reveals molecular insights into type 2 long QT syndrome. Nat Commun 5:5535
Spencer, C Ian; Baba, Shiro; Nakamura, Kenta et al. (2014) Calcium transients closely reflect prolonged action potentials in iPSC models of inherited cardiac arrhythmia. Stem Cell Reports 3:269-81
Lin, Eric C; Moungey, Brooke M; Lim, Evi et al. (2014) Mouse ERG K(+) channel clones reveal differences in protein trafficking and function. J Am Heart Assoc 3:e001491
Su, Xiaojing; Theberge, Ashleigh B; January, Craig T et al. (2013) Effect of microculture on cell metabolism and biochemistry: do cells get stressed in microchannels? Anal Chem 85:1562-70
Smith, Jennifer L; Reloj, Allison R; Nataraj, Parvathi S et al. (2013) Pharmacological correction of long QT-linked mutations in KCNH2 (hERG) increases the trafficking of Kv11.1 channels stored in the transitional endoplasmic reticulum. Am J Physiol Cell Physiol 305:C919-30
Balijepalli, Sadguna Y; Lim, Evi; Concannon, Sarah P et al. (2012) Mechanism of loss of Kv11.1 K+ current in mutant T421M-Kv11.1-expressing rat ventricular myocytes: interaction of trafficking and gating. Circulation 126:2809-18
Bartos, Daniel C; Duchatelet, Sabine; Burgess, Don E et al. (2011) R231C mutation in KCNQ1 causes long QT syndrome type 1 and familial atrial fibrillation. Heart Rhythm 8:48-55
Cheng, Jianding; Tester, David J; Tan, Bi-Hua et al. (2011) The common African American polymorphism SCN5A-S1103Y interacts with mutation SCN5A-R680H to increase late Na current. Physiol Genomics 43:461-6
Peal, David S; Mills, Robert W; Lynch, Stacey N et al. (2011) Novel chemical suppressors of long QT syndrome identified by an in vivo functional screen. Circulation 123:23-30

Showing the most recent 10 out of 39 publications