Epidemiological data demonstrate that aerobic exercise training can dramatically reduce cardiac mortality even in patients with pre-existing cardiac disease. The mechanisms responsible for this cardio protection remain largely to be determined. It is probable that exercise-induced changes in cardiac autonomic regulation play a major role in the improved cardiac mortality. Cardiac autonomic balance is altered by cardiac disease and the patients with the greatest changes (i.e., decreased parasympathetic and/or increased sympathetic activity) are also at the greatest risk for sudden death presumably due to ventricular fibrillation (VF). Exercise training can increase parasympathetic and decrease sympathetic activity and could thereby reduce mortality. Therefore, the proposed studies will test the central hypothesis that exercise training augments parasympathetic and/or reduces cardiac sympathetic activity and thereby protects against VF.
Specific Aim #1 will test the hypothesis that exercise training alters cardiac autonomic balance in animals susceptible and resistant to VF. Specifically, cardiac autonomic balance will be evaluated in animals either resistant or susceptible to VF before, during and after the completion of an exercise conditioning program (8-10 weeks of daily treadmill running). The autonomic response to two different physiological stressors, submaximal exercise and acute myocardial ischemia, will be evaluated. Cardiac autonomic balance will be evaluated by pharmacological tests (agonist dose response, effects of selective antagonists), baroreflex sensitivity, and time series analysis of R-R interval variability.
Specific Aim #2 will test the hypothesis that the cardiac autonomic changes induced by exercise training are responsible for the protection noted for this intervention. The effects of parasympathetic activity will be evaluated with a cholinergic antagonist. Thus, if parasympathetic enhancement is responsible for the protection, then atropine should reinstate VF in the susceptible animals.
Specific Aim #3 will test the hypothesis that exercise training can reverse the increased Beta-adrenoceptor responsiveness that we have shown to occur in dogs that become susceptible to VF following myocardial infarction. Ventricular contractile responses to Beta1- and Beta2-adrenoceptor stimulation will be examined in vivo by echocardiography and in vitro by single cell fluorescence microscopy/video edge detection.
Showing the most recent 10 out of 15 publications