Coronary heart disease (CHD) is a complex disorder constituting a major health problem in Western societies.
We aim to assess the unknown genetic background of CHD by investigating the most common familial dyslipidemia predisposing to CHD, familial combined hyperlipidemia (FCHL). The population prevalence of FCHL is estimated to be 1-2 percent and the disorder affects 10-20 percent of families with premature CHD. In FCHL, serum cholesterol, triglycerides, or both are elevated. Both environmental and genetic factors are suggested to affect the complex FCHL phenotype. Since the molecular basis of FCHL is unknown, a significant number of genetically predisposed individuals remain unidentified and exposed to premature CHD. We will use our unique study samples from the genetically isolated population of Finland and apply molecular genetic tools to first restrict the genetic locus we have identified and then to characterize the causative gene underlying the FCHL disorder on chromosome 1q21. Specifically, we first aim to further restrict the region by dissecting the different component traits. We will genotype an extended study sample consisting of all available family members of 61 FCHL families with dense sets of microsatellite markers and single nucleotide polymorphisms to fully utilize the refined quantitative phenotype information in fine mapping. Second, we aim to build a transcript map over the critical region on 1q21-q23 and to identify the causative FCHL gene among the regional candidate genes. This region on 1q21-q23 is orthologous to a region on mouse chromosome 3, where a locus (Hyplip 1) for combined hyperlipidemia has been identified. We have analyzed the human homolog of the Hyplip 1 gene but disappointingly, the human Hyplip 1 gene was found 10 Mb from the peak linkage markers and no evidence emerged for Hyplip 1 as a causative gene for FCHL. Our targets to identify the FCHL gene are currently the genes showing strongest association near the linkage peak. The FCHL gene will then be functionally characterized to prove the biological dysfunction. Characterizing one gene for FCHL would improve our understanding of molecular mechanisms of cardiovascular disease, and potentially lead to more accurate diagnosis, treatment and prevention.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL070150-05
Application #
7095090
Study Section
Mammalian Genetics Study Section (MGN)
Program Officer
Wassef, Momtaz K
Project Start
2003-03-15
Project End
2008-02-28
Budget Start
2006-03-01
Budget End
2008-02-28
Support Year
5
Fiscal Year
2006
Total Cost
$402,806
Indirect Cost
Name
Massachusetts Institute of Technology
Department
Type
Organized Research Units
DUNS #
001425594
City
Cambridge
State
MA
Country
United States
Zip Code
02139
Auro, K; Kristiansson, K; Zethelius, B et al. (2008) USF1 gene variants contribute to metabolic traits in men in a longitudinal 32-year follow-up study. Diabetologia 51:464-72
Auro, Kirsi; Alanne, Mervi; Kristiansson, Kati et al. (2007) Combined effects of thrombosis pathway gene variants predict cardiovascular events. PLoS Genet 3:e120
Lee, Jenny C; Weissglas-Volkov, Daphna; Kyttala, Mira et al. (2007) USF1 contributes to high serum lipid levels in Dutch FCHL families and U.S. whites with coronary artery disease. Arterioscler Thromb Vasc Biol 27:2222-7
Dastani, Zari; Quiogue, Leigh; Plaisier, Christopher et al. (2006) Evidence for a gene influencing high-density lipoprotein cholesterol on chromosome 4q31.21. Arterioscler Thromb Vasc Biol 26:392-7
Auro, K; Komulainen, K; Alanne, M et al. (2006) Thrombomodulin gene polymorphisms and haplotypes and the risk of cardiovascular events: a prospective follow-up study. Arterioscler Thromb Vasc Biol 26:942-7
Suviolahti, Elina; Reue, Karen; Cantor, Rita M et al. (2006) Cross-species analyses implicate Lipin 1 involvement in human glucose metabolism. Hum Mol Genet 15:377-86
Weissglas-Volkov, Daphna; Huertas-Vazquez, Adriana; Suviolahti, Elina et al. (2006) Common hepatic nuclear factor-4alpha variants are associated with high serum lipid levels and the metabolic syndrome. Diabetes 55:1970-7
Lee, Jenny C; Lusis, Aldons J; Pajukanta, Paivi (2006) Familial combined hyperlipidemia: upstream transcription factor 1 and beyond. Curr Opin Lipidol 17:101-9
Peltonen, Leena; Perola, Markus; Naukkarinen, Jussi et al. (2006) Lessons from studying monogenic disease for common disease. Hum Mol Genet 15 Spec No 1:R67-74
Komulainen, Kati; Alanne, Mervi; Auro, Kirsi et al. (2006) Risk alleles of USF1 gene predict cardiovascular disease of women in two prospective studies. PLoS Genet 2:e69

Showing the most recent 10 out of 17 publications