Over 30 million men suffer from erectile dysfunction in the United States. Constriction and dilation of the cavernosal vasculature determines penile erection. In the absence of arousal stimuli, Ca2+-sensitizing RhoA/Rho-kinase signaling maintains vasoconstriction, keeping the penis non-erect. Upon arousal, nitric oxide (NO), released from nerves and endothelial cells, induces dilation and erection. Although NO stimulates erection, the cellular mechanism of NO is unknown. NO binds soluble guanylate cyclase to stimulate an increase in cyclic GMP (cGMP) and the subsequent activation of cGMP-dependent protein kinase (cGK). In the penis, cGK has been proposed to induce dilation through activation of membrane K+ channels to cause hyperpolarization, inhibition of membrane Ca2+ channels to decrease activator Ca+, and stimulation of sarcoplasmic reticular Ca2+ uptake to sequester the cation. However, recent work suggests that high levels of activator Ca2+ are not maintained during constriction and it is the Ca2+-sensitizing effect of RhoAJRho-kinase that must be overcome to cause dilation. We hypothesize that cGK inhibits RhoA translocation to the membrane leading to a reduction in Rho-kinase activity and removal of its inhibitory action on myosin light chain (MLC) phosphatase. This dis-inhibition leads to reduced MLC phosphorylation, smooth muscle relaxation and erection. We further hypothesize that the long-term expression of components of the RhoA/Rho-kinase signaling pathway are inversely related to NO bioavailability. These hypotheses will be tested by 3 specific aims: 1) to determine if NO/cGMP/cGK signaling antagonizes RhoA activation to evoke dilation and penile erection; 2) to determine if gene transfer of endothelial nitric oxide synthase (eNOS) to the penis will down-regulate RhoA/Rho-kinase signaling to augment erection; and 3) to determine if reduced NO bioavailability (pharmacological blockade and denervation) leads to up-regulation of the RhoA/Rho-kinase pathway and erectile dysfunction. The approach will utilize rat and mouse models of erection. The experiments will determine the effect of NO/cGMP/cGK on biochemical, pharmacological and physiological measures of the RhoA/Rho-kinase pathway in the intact penis and in isolated cavernosal strips. Gene transfer of dominant-negative RhoA and endothelial NOS to the penis will provide a powerful tool to manipulate the activity of the RhoA/Rho-kinase pathway. Contractile force measurements in isolated cavernosal strips (intact and permeablizied) will provide evidence for Ca2+ sensitization and its regulation by cGMP/cGK. These studies will define the molecular basis for NO-mediated cavernosal vasodilation in the normal state and how long-term changes in the Ca 2+ sensitizing mechanism contribute to erectile dysfunction. ? ?

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
1R01HL071138-01A1
Application #
6609639
Study Section
Special Emphasis Panel (ZRG1-UROL (01))
Program Officer
Goldman, Stephen
Project Start
2003-04-04
Project End
2007-03-31
Budget Start
2003-04-04
Budget End
2004-03-31
Support Year
1
Fiscal Year
2003
Total Cost
$357,813
Indirect Cost
Name
Medical College of Georgia (MCG)
Department
Physical Medicine & Rehab
Type
Schools of Medicine
DUNS #
966668691
City
Augusta
State
GA
Country
United States
Zip Code
30912
Wynne, Brandi M; McCarthy, Cameron G; Szasz, Theodora et al. (2018) Protein kinase C? deletion causes hypotension and decreased vascular contractility. J Hypertens 36:510-519
Crestani, Sandra; Webb, Robert Clinton; da Silva-Santos, José Eduardo (2017) High-Salt Intake Augments the Activity of the RhoA/ROCK Pathway and Reduces Intracellular Calcium in Arteries From Rats. Am J Hypertens 30:389-399
McCarthy, Cameron G; Wenceslau, Camilla F; Goulopoulou, Styliani et al. (2017) Chloroquine Suppresses the Development of Hypertension in Spontaneously Hypertensive Rats. Am J Hypertens 30:173-181
Wynne, Brandi M; Labazi, Hicham; Carneiro, Zidonia N et al. (2017) Angeli's Salt, a nitroxyl anion donor, reverses endothelin-1 mediated vascular dysfunction in murine aorta. Eur J Pharmacol 814:294-301
McCarthy, Cameron G; Wenceslau, Camilla F; Goulopoulou, Styliani et al. (2016) Autoimmune therapeutic chloroquine lowers blood pressure and improves endothelial function in spontaneously hypertensive rats. Pharmacol Res 113:384-394
McCarthy, Cameron G; Webb, R Clinton (2016) The toll of the gridiron: damage-associated molecular patterns and hypertension in American football. FASEB J 30:34-40
McCarthy, Cameron G; Wenceslau, Camilla F; Goulopoulou, Styliani et al. (2015) Circulating mitochondrial DNA and Toll-like receptor 9 are associated with vascular dysfunction in spontaneously hypertensive rats. Cardiovasc Res 107:119-30
Bomfim, G F; Echem, C; Martins, C B et al. (2015) Toll-like receptor 4 inhibition reduces vascular inflammation in spontaneously hypertensive rats. Life Sci 122:1-7
Goulopoulou, Styliani; Hannan, Johanna L; Matsumoto, Takayuki et al. (2015) Reduced vascular responses to soluble guanylyl cyclase but increased sensitivity to sildenafil in female rats with type 2 diabetes. Am J Physiol Heart Circ Physiol 309:H297-304
Spitler, Kathryn M; Webb, R Clinton (2014) Endoplasmic reticulum stress contributes to aortic stiffening via proapoptotic and fibrotic signaling mechanisms. Hypertension 63:e40-5

Showing the most recent 10 out of 105 publications