Neutrophils are the most abundant cell type among circulating white blood cells and constitute the first line of host defense against invading bacteria and other pathogens. They are terminally differentiated cells and normally have a very short life-span (6-7 hours in blood and 1-4 days in tissue). Neutrophils readily undergo spontaneous programmed cell death (apoptosis) and this death program needs to be well controlled to maintain the normal neutrophil count. Accelerated neutrophil death leads to a decrease of neutrophil counts (neutropenia), while delayed neutrophil death elevates neutrophil counts (neutrophilia). Delayed clearance of neutrophils in tissues causes unwanted and exaggerated inflammation. The long-term goal of this project is to elucidate the molecular basis of this finely regulated neutrophil spontaneous death. The susceptibility of cells to apoptosis appears to be dependent on the balance between pro-apoptotic and pro-survival (anti-apoptotic) signals. We recently established deactivation of Ptdlns(3,4,5)P3/Akt, a well known cellular survival signal, as one of the causal mediators of apoptosis in a variety of cells. We also investigated the involvement of Ptdlns(3,4,5)P3/Akt signaling in neutrophil spontaneous death. Our preliminary data show that Ptdlns(3,4,5)P3/Akt signal is dramatically deactivated during neutrophil death. Inhibition of this signal pathway promotes neutrophil spontaneous death, while augmentation of this signal prevents neutrophil death. Accordingly, we hypothesize that Ptdlns(3,4,5)P3/Akt deactivation acts as a physiological mediator in neutrophil spontaneous death. To further understand the involvement of Ptdlns(3,4,5)P3/Akt signaling in neutrophil death, we will characterize the molecular mechanisms by which Ptdlns(3,4,5)P3/Akt activity is down regulated during neutrophil spontaneous death (Aim I). Moreover, the downstream mechanisms responsible for Ptdlns(3,4,5)P3/Akt deactivation-mediated neutrophil death will be investigated (Aim II). Finally, the contribution of Ptdlns(3,4,5)P3/Akt pathway to neutrophil death in live animals will be investigated using a mouse peritonitis model (Aim III). Together, these studies will provide a better understanding of the role of Ptdlns(3,4,5)P3/Akt in neutrophil spontaneous death, with the ultimate goal of establishing Ptdlns(3,4,5)P3/Akt and related pathways as therapeutic targets for modulating neutrophil functions. Thus, more efficient and effective therapies could be developed to treat a variety of infectious and inflammatory diseases. In addition, defining the molecular basis of neutrophil spontaneous death will assist us to design novel clinical procedures for the long-term storage and application of neutrophils in transfusion medicine.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL085100-04
Application #
7789420
Study Section
Erythrocyte and Leukocyte Biology Study Section (ELB)
Program Officer
Mondoro, Traci
Project Start
2007-04-01
Project End
2011-08-31
Budget Start
2010-04-01
Budget End
2011-08-31
Support Year
4
Fiscal Year
2010
Total Cost
$422,500
Indirect Cost
Name
Children's Hospital Boston
Department
Type
DUNS #
076593722
City
Boston
State
MA
Country
United States
Zip Code
02115
Jo, Hakryul; Loison, Fabien; Luo, Hongbo R (2014) Microtubule dynamics regulates Akt signaling via dynactin p150. Cell Signal 26:1707-16
Zhao, Fan; Li, Jingyu; Zhou, Ning et al. (2014) De novo chemoattractants form supramolecular hydrogels for immunomodulating neutrophils in vivo. Bioconjug Chem 25:2116-22
Liang, Olin D; Lu, Jiayun; Nombela-Arrieta, César et al. (2013) Deficiency of lipid phosphatase SHIP enables long-term reconstitution of hematopoietic inductive bone marrow microenvironment. Dev Cell 25:333-49
Xu, Yuanfu; Li, Hongmei; Bajrami, Besnik et al. (2013) Cigarette smoke (CS) and nicotine delay neutrophil spontaneous death via suppressing production of diphosphoinositol pentakisphosphate. Proc Natl Acad Sci U S A 110:7726-31
Jo, Hakryul; Mondal, Subhanjan; Tan, Dewar et al. (2012) Small molecule-induced cytosolic activation of protein kinase Akt rescues ischemia-elicited neuronal death. Proc Natl Acad Sci U S A 109:10581-6
Takizawa, Shunya; Nagata, Eiichiro; Luo, Hongbo R (2012) [Novel neuroprotective agents: a HIF activator and an Akt activator]. Rinsho Shinkeigaku 52:911-2
Oyoshi, Michiko K; He, Rui; Li, Yitang et al. (2012) Leukotriene B4-driven neutrophil recruitment to the skin is essential for allergic skin inflammation. Immunity 37:747-58
Mondal, Subhanjan; Subramanian, Kulandayan K; Sakai, Jiro et al. (2012) Phosphoinositide lipid phosphatase SHIP1 and PTEN coordinate to regulate cell migration and adhesion. Mol Biol Cell 23:1219-30
Sakai, Jiro; Li, Jingyu; Subramanian, Kulandayan K et al. (2012) Reactive oxygen species-induced actin glutathionylation controls actin dynamics in neutrophils. Immunity 37:1037-49
Li, Yitang; Prasad, Amit; Jia, Yonghui et al. (2011) Pretreatment with phosphatase and tensin homolog deleted on chromosome 10 (PTEN) inhibitor SF1670 augments the efficacy of granulocyte transfusion in a clinically relevant mouse model. Blood 117:6702-13

Showing the most recent 10 out of 24 publications