Voltage-dependent potassium channels (Kv) are integral membrane proteins that, in response to membrane voltage changes, catalyze potassium ions to diffuse across the cell membrane. Kv channels regulate membrane excitability and are essential to many physiological processes such as the rhythmic beating of heart, the communication between neurons, and the secretion of hormones. The beta subunit (Kvp) of the Shaker type Kv channels (Kv1) permanently attaches to the intracellular side of a channel and is implicated in channel modulation during oxidative stresses and hypoxic conditions. Sequence conservation suggests that Kvp resembles an aldo-keto reductase (AKR), and the crystal structure of a Kvp showed that it has a canonical AKR fold, a tightly bound cofactor nicotinamide adenine dinucleotide phosphate (NADPH), and highly conserved catalytic residues in the right geometry for catalysis to happen. However, the enzymatic activity of Kvp has never been demonstrated. The overall objectives of this proposal are to examine how Kvp as a functional AKR modulates channel function, to investigate how the enzymatic activity is coupled to channel activities, and to develop an atomic level understanding of the coupling mechanism. The long-term goals of the project are to understand the physiology of Kvp, and the principles governing Kv channel modulations. We have recently identified several Kvp substrates, and demonstrated that Kvp is a functional aldo-keto reductase. We also found that the substrates modulates channel function only when a Kvp is co- expressed. These exciting new results led us to hypothesize that: 1) the AKR function of Kvp is coupled to Kv channel functions;2) the coupling is achieved through interactions between intracellular domains and Kvp 3) different redox states of Kvp have different conformations that induce a conformational change of a channel domain. To test these hypotheses, we propose the following three specific aims:
Aim 1 : To examine the functional coupling between channel activities and the AKR activity of Kvp.
Aim 2 : To investigate the molecular bases of the coupling mechanism.
Aim 3 : To investigate the structural bases of the coupling. Results from this project will help us understand modulations of the various Kv channel families, and will help develop therapeutic reagents that target the macromolecule complex.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL086392-05
Application #
7765496
Study Section
Electrical Signaling, Ion Transport, and Arrhythmias Study Section (ESTA)
Program Officer
OH, Youngsuk
Project Start
2006-03-15
Project End
2012-02-28
Budget Start
2010-03-01
Budget End
2012-02-28
Support Year
5
Fiscal Year
2010
Total Cost
$390,828
Indirect Cost
Name
Columbia University (N.Y.)
Department
Physiology
Type
Schools of Medicine
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Ren, Zhenning; Lee, Jumin; Moosa, Mahdi Muhammad et al. (2018) Structure of an EIIC sugar transporter trapped in an inward-facing conformation. Proc Natl Acad Sci U S A 115:5962-5967
Lee, Jumin; Ren, Zhenning; Zhou, Ming et al. (2017) Molecular Simulation and Biochemical Studies Support an Elevator-type Transport Mechanism inĀ EIIC. Biophys J 112:2249-2252
Su, Deyuan; Zhao, Hong; Hu, Jinsheng et al. (2016) TRPA1 and TRPV1 contribute to iodine antiseptics-associated pain and allergy. EMBO Rep 17:1422-1430
McCoy, Jason G; Ren, Zhenning; Stanevich, Vitali et al. (2016) The Structure of a Sugar Transporter of the Glucose EIIC Superfamily Provides Insight into the Elevator Mechanism of Membrane Transport. Structure 24:956-64
McCoy, Jason G; Levin, Elena J; Zhou, Ming (2015) Structural insight into the PTS sugar transporter EIIC. Biochim Biophys Acta 1850:577-85
Fogle, Keri J; Baik, Lisa S; Houl, Jerry H et al. (2015) CRYPTOCHROME-mediated phototransduction by modulation of the potassium ion channel ?-subunit redox sensor. Proc Natl Acad Sci U S A 112:2245-50
Bai, Yonghong; McCoy, Jason G; Levin, Elena J et al. (2015) X-ray structure of a mammalian stearoyl-CoA desaturase. Nature 524:252-6
Levin, Elena J; Zhou, Ming (2014) Recent progress on the structure and function of the TrkH/KtrB ion channel. Curr Opin Struct Biol 27:95-101
Levin, Elena J; Zhou, Ming (2014) Structure of urea transporters. Subcell Biochem 73:65-78
Huang, Hua; Levin, Elena J; Liu, Shian et al. (2014) Structure of a membrane-embedded prenyltransferase homologous to UBIAD1. PLoS Biol 12:e1001911

Showing the most recent 10 out of 20 publications