Respiratory tract pathogens such as the human parainfluenza virus and SARS coronavirus effectively infect human airways by exploiting a diverse set of cell surface glycans and glycoprotein receptors encountered in airway cell types. In case of adeno-associated viruses (AAV), serotypes 1, 5, 6 and more recently, AAV9 have been shown to efficiently transduce airways in vitro and in vivo, albeit with striking species-specific and serotype-specific differences. The goal of this proposal is to elucidate molecular and cellular determinants of airway tropism in AAV serotypes. To achieve such, we have devised a comprehensive approach that hinges on molecular manipulation of AAV capsids through mutagenesis, biochemical reagents for identification of glycans and co-receptors that mediate AAV airway cell entry and relevant in vitro models of the human respiratory tract. The strategies described herein will (a) define AAV capsid structural elements at the amino acid level that determine airway tropism, and (b) enable identification of cell surface components including glycans and integrin subunits that dictate AAV tropism for different airway cell types. The proposed studies will help provide a comprehensive picture of the mechanisms underlying AAV airway cell entry as well as provide insight into species-specific differences in AAV airway tropism. If successful, this knowledge may facilitate improvements in AAV vectors as well as in the design of preclinical/clinical studies focused on gene therapy of airway diseases such as cystic fibrosis.

Public Health Relevance

The goal of this proposal is to understand the molecular mechanisms exploited by AAV in infecting human airways. To achieve such, we will use a comprehensive approach including molecular virology techniques, novel biochemical reagents and a panel of different human airway cell types. If successful, this knowledge may facilitate improvements in AAV vectors as well as in the design of preclinical/clinical studies focused on gene therapy of airway diseases such as cystic fibrosis.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL089221-05
Application #
8386661
Study Section
Gene and Drug Delivery Systems Study Section (GDD)
Program Officer
Banks-Schlegel, Susan P
Project Start
2008-12-12
Project End
2013-12-31
Budget Start
2012-12-01
Budget End
2013-12-31
Support Year
5
Fiscal Year
2013
Total Cost
$278,974
Indirect Cost
$90,478
Name
University of North Carolina Chapel Hill
Department
Genetics
Type
Schools of Medicine
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Mestre, Humberto; Hablitz, Lauren M; Xavier, Anna Lr et al. (2018) Aquaporin-4-dependent glymphatic solute transport in the rodent brain. Elife 7:
Tse, Longping V; Moller-Tank, Sven; Meganck, Rita M et al. (2018) Mapping and Engineering Functional Domains of the Assembly-Activating Protein of Adeno-associated Viruses. J Virol 92:
Albright, Blake H; Storey, Claire M; Murlidharan, Giridhar et al. (2018) Mapping the Structural Determinants Required for AAVrh.10 Transport across the Blood-Brain Barrier. Mol Ther 26:510-523
Berry, Garrett E; Tse, Longping V (2017) Virus Binding and Internalization Assay for Adeno-associated Virus. Bio Protoc 7:
Tse, Longping Victor; Klinc, Kelli A; Madigan, Victoria J et al. (2017) Structure-guided evolution of antigenically distinct adeno-associated virus variants for immune evasion. Proc Natl Acad Sci U S A 114:E4812-E4821
Huang, Lin-Ya; Patel, Ami; Ng, Robert et al. (2016) Characterization of the Adeno-Associated Virus 1 and 6 Sialic Acid Binding Site. J Virol 90:5219-5230
Murlidharan, Giridhar; Crowther, Andrew; Reardon, Rebecca A et al. (2016) Glymphatic fluid transport controls paravascular clearance of AAV vectors from the brain. JCI Insight 1:e88034
Berry, Garrett E; Asokan, Aravind (2016) Chemical Modulation of Endocytic Sorting Augments Adeno-associated Viral Transduction. J Biol Chem 291:939-47
Berry, Garrett Edward; Asokan, Aravind (2016) Cellular transduction mechanisms of adeno-associated viral vectors. Curr Opin Virol 21:54-60
Tseng, Yu-Shan; Vliet, Kim Van; Rao, Lavanya et al. (2016) Generation and characterization of anti-Adeno-associated virus serotype 8 (AAV8) and anti-AAV9 monoclonal antibodies. J Virol Methods 236:105-110

Showing the most recent 10 out of 43 publications