In the past 5 years, continuous-flow (CF) rotary pumps have replaced volume-displacement pulsatile-flow pumps because of their simplicity, increased mechanical reliability, improved durability, smaller size, and better outcomes. In contrast to left ventricular assist devices (LVADs), existing clinical total artificial hearts (TAH) are all volume-displacement pulsatile-flow pumps, and they have significant limitations in their large size and durability. In response to these limitations, Cleveland Clinic has been developing a unique, valveless, and sensorless CFTAH with induced pulse under the current NIH-funded program (R01 HL096619). It has a single, continuously rotating, brushless DC motor and pump assembly with a centrifugal pump on both ends of the rotor. The pump passively balances left and right atrial pressures without sensors and is small enough (6.6 cm in diameter and 9.8 cm in length) to fit in small patients. The most recent, three consecutive calf experiments, conducted with no anticoagulation therapy, demonstrated outstanding biocompatibility with no thromboembolism in any organs. The animals remained healthy and were sacrificed at the planned duration of 30 or 90 days, which is the current world's record for longest duration of implant for a TAH with a single moving part. The objectives of this competitive renewal application are (1) to improve and refine the current CFTAH design by implementing the lessons learned from the prior program, (2) to develop a new continuous patient monitor (CPM) to enhance the real-time output of hemodynamic and pump information, and (3) to study the effects of pulsatility on pathophysiology with this ideal experimental platform.
Specific aims to achieve these objectives are (1) Analyze the system requirements and refine the pump design, with input from clinical and industry experts and CFD analysis, to further improve biocompatibility, inherent hydraulic pump regulation, durability, and automatic flow control. (2) Develop and evaluate the real-time CPM using power and force- balanced rotor position signals to estimate pump flow, systemic and pulmonary pressure gradients and vascular resistances, inlet pressure difference, left and/or right suction and its severity, and blockage proximal to the pump, (3) Complete in vitro validation of system performance and level of hemolysis over the clinically relevant range of operation, (4) Complete in vivo animal experiments to validate hemodynamic response, biocompatibility, self-regulating mechanical design, and automatic speed control, and (5) Evaluate the effects of nonpulse or reduced pulse on hemodynamic response and pathophysiology with the same device by performing in vivo pulsatility studies. The successful completion of this program will demonstrate the safety and effectiveness of this CFTAH technology, making it ready for technology transfer, and ultimately providing clinicians with a valuable treatment option for patients with biventricular heart failure, which is the goal o this project.

Public Health Relevance

Heart failure is an important healthcare issue and primary source of cardiovascular mortality affecting about 23 million people worldwide. For a certain group of patients that require a total artificial heart (TAH), existing clinical TAH devices, which are all volume-displacement pulsatile-flow pumps, have significant limitations in their large size and durability. We are developing a unique, valveless, and pulsatile continuous-flow TAH (CFTAH), and successful completion of this program will demonstrate the safety and effectiveness of this CFTAH technology, and ultimately provide clinicians with a valuable treatment option for patients with biventricular heart failure.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL096619-07
Application #
9521920
Study Section
Bioengineering, Technology and Surgical Sciences Study Section (BTSS)
Program Officer
Baldwin, Tim
Project Start
2010-04-01
Project End
2020-06-30
Budget Start
2018-07-01
Budget End
2019-06-30
Support Year
7
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Cleveland Clinic Lerner
Department
Other Basic Sciences
Type
Schools of Medicine
DUNS #
135781701
City
Cleveland
State
OH
Country
United States
Zip Code
44195
Miyamoto, Takuma; Horvath, David J; Horvath, Dennis W et al. (2018) Simulated Performance of the Cleveland Clinic Continuous-Flow Total Artificial Heart Using the Virtual Mock Loop. ASAIO J :
Karimov, Jamshid H; Grady, Patrick; Sinkewich, Martin et al. (2017) Moderate hypothermia technique for chronic implantation of a total artificial heart in calves. J Artif Organs 20:182-185
Fukamachi, Kiyotaka; Karimov, Jamshid H; Sunagawa, Gengo et al. (2017) Generating pulsatility by pump speed modulation with continuous-flow total artificial heart in awake calves. J Artif Organs 20:381-385
Sunagawa, Gengo; Horvath, David J; Karimov, Jamshid H et al. (2016) Future Prospects for the Total Artificial Heart. Expert Rev Med Devices 13:191-201
Karimov, Jamshid H; Steffen, Robert J; Byram, Nicole et al. (2015) Human Fitting Studies of Cleveland Clinic Continuous-Flow Total Artificial Heart. ASAIO J 61:424-8
Karimov, Jamshid H; Horvath, David; Sunagawa, Gengo et al. (2015) Post-explant visualization of thrombi in outflow grafts and their junction to a continuous-flow total artificial heart using a high-definition miniaturized camera. J Artif Organs 18:354-7
Horvath, David; Karimov, Jamshid H; Byram, Nicole et al. (2015) Sensorless Suction Recognition in the Self-Regulating Cleveland Clinic Continuous-Flow Total Artificial Heart. ASAIO J 61:726-8
Karimov, Jamshid H; Sunagawa, Gengo; Golding, Leonard A R et al. (2015) Double-wire sternal closure technique in bovine animal models for total artificial heart implant. Int J Artif Organs 38:465-7
Karimov, Jamshid H; Moazami, Nader; Kobayashi, Mariko et al. (2015) First report of 90-day support of 2 calves with a continuous-flow total artificial heart. J Thorac Cardiovasc Surg 150:687-93.e1
Karimov, Jamshid H; Sunagawa, Gengo; Such, Kimberly A et al. (2015) Anatomy of the bovine ascending aorta and brachiocephalic artery found unfavorable for total artificial heart implant. J Artif Organs 18:358-60

Showing the most recent 10 out of 15 publications