In what some have described as a paradigm change, we found that the matrikine proline-glycine-proline (PGP), a collagen derived peptide, regulates neutrophil influx in chronic lung diseases such as cystic fibrosis (CF).
The aims of the previous cycle of this grant focused on the proteolytic pathway responsible for the generation of PGP and the impact of this generation system in CF lung disease. The current project examines a novel mechanism of PGP degradation in CF, a finding rooted in a manuscript in Science, which shows that this action is carried out by the aminopeptidase activity of leukotriene A4 hydrolase (LTA4H). We present recent data which demonstrates that the aminopeptidase activity is significantly reduced, and consequently PGP is increased, in CF lung disease by two discrete mechanisms: (1) chemical alteration of enzymatic activity by modifications by the reactive aldehyde acrolein and (2) proteolytic degradation by the serine protease neutrophil elastase (NE). Based on these findings we propose the following aims: the first will examine the method by which acrolein and NE inactivate LTA4H aminopeptidase activity, by using mass spectrometry to assess residues altered by acrolein and cleavage products generated by NE (Aim 1). Next we examine if bacterial colonization with Pseudomonas aeruginosa, a key pathogen in CF lung disease, modulates LTA4H aminopeptidase activity and if alterations in LTA4H aminopeptidase function (by either pharmacologic or genetic methods) impact bacterial colonization (Aim 2).
Aim 3 utilizes the beta ENaC overexpressor mouse, a model of the chronic neutrophilic inflammation observed in CF lung disease. Initial observations demonstrate a progressive accumulation of PGP peptides as these mice age and in association with a progressive loss of LTA4H aminopeptidase activity. These mice also demonstrate increased LTB4 levels due to increased LTA4H epoxy hydrolase activity. For this aim, we will modulate each of these enzymatic activities by utilizing an epoxy hydrolase specific inhibitor (RS74), a compound to enhance LTA4H aminopeptidase activity (4-MDM), or both compounds in combination.
Aim 4 will focus on examining PGP levels, as well as LTA4H levels and aminopeptidase activity, in patients colonized with Pseudomonas aeruginosa. We anticipate the data generated from these aims will provide clear evidence of a novel host-pathogen interplay, leading to loss of LTA4H aminopeptidase activity and increased neutrophilic inflammation. The successful completion of these aims will provide a mechanistic understanding of this dysfunction and new therapeutic approaches to targeting these pathways in CF lung disease.

Public Health Relevance

Cystic fibrosis is a chronic lung disease which is associated with notable morbidity and mortality. The current proposal examines the role of a new pathway which regulates inflammation by degrading bioactive collagen fragments in cystic fibrosis, with a focus on new therapeutic approaches to disease outcome.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL102371-07
Application #
9617271
Study Section
Lung Cellular, Molecular, and Immunobiology Study Section (LCMI)
Program Officer
Lachowicz-Scroggins, Marrah Elizabeth
Project Start
2010-07-02
Project End
2021-12-31
Budget Start
2019-01-01
Budget End
2019-12-31
Support Year
7
Fiscal Year
2019
Total Cost
Indirect Cost
Name
University of Alabama Birmingham
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
063690705
City
Birmingham
State
AL
Country
United States
Zip Code
35294
Russell, Derek W; Gaggar, Amit (2018) ADAM9: A Damaging Player in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 198:1465-1466
Forrest, Osric A; Ingersoll, Sarah A; Preininger, Marcela K et al. (2018) Frontline Science: Pathological conditioning of human neutrophils recruited to the airway milieu in cystic fibrosis. J Leukoc Biol 104:665-675
Payne, Gregory A; Li, Jindong; Xu, Xin et al. (2017) The Matrikine Acetylated Proline-Glycine-Proline Couples Vascular Inflammation and Acute Cardiac Rejection. Sci Rep 7:7563
Lal, Charitharth V; Xu, Xin; Jackson, Patricia et al. (2017) Ureaplasma infection-mediated release of matrix metalloproteinase-9 and PGP: a novel mechanism of preterm rupture of membranes and chorioamnionitis. Pediatr Res 81:75-79
Szul, Tomasz; Bratcher, Preston E; Fraser, Kyle B et al. (2016) Toll-Like Receptor 4 Engagement Mediates Prolyl Endopeptidase Release from Airway Epithelia via Exosomes. Am J Respir Cell Mol Biol 54:359-69
Gaggar, Amit; Weathington, Nathaniel (2016) Bioactive extracellular matrix fragments in lung health and disease. J Clin Invest 126:3176-84
Russell, Derek W; Gaggar, Amit; Solomon, George M (2016) Neutrophil Fates in Bronchiectasis and Alpha-1 Antitrypsin Deficiency. Ann Am Thorac Soc 13 Suppl 2:S123-9
Kulkarni, Tejaswini; O'Reilly, Philip; Antony, Veena B et al. (2016) Matrix Remodeling in Pulmonary Fibrosis and Emphysema. Am J Respir Cell Mol Biol 54:751-60
Szul, Tomasz; Castaldi, Peter; Cho, Michael H et al. (2016) Genetic regulation of expression of leukotriene A4 hydrolase. ERJ Open Res 2:
Raju, S Vamsee; Kim, Hyunki; Byzek, Stephen A et al. (2016) A ferret model of COPD-related chronic bronchitis. JCI Insight 1:e87536

Showing the most recent 10 out of 41 publications