Pan-Genomic Approaches for Comprehensive Screening of Novel or Emerging Infectious Agents in Blood Emerging infectious agents, the latest of which is Zika virus, continually threaten the safety of the 15 million transfusions performed annually in the United States, yet the lack of diagnostic tools to comprehensively test for all bloodborne pathogens or to identify infections from novel viruses has greatly hindered surveillance efforts. In a previous grant, we have pioneered the development of microarray and metagenomic sequencing-based approaches to comprehensively screen blood for both known and novel pathogens, and have identified a number of novel viruses circulating in human blood. We have established long-term collaborations with national and international collaborators who will provide us with clinical and donor blood samples from individuals infected with chikungunya, dengue, Ebola, Zika, Lassa, and West Nile virus, as well as non-viral pathogens (e.g. Babesia microti and Plasmodium falciparum), for analysis. This project proposes (1) to develop an accurate and comprehensive yet practical sequencing-based platform (BloodSeq) for simultaneous detection and whole-genome characterization of all American Association of Blood Banks (AABB)-priority pathogens in infected patients and blood donations, (2) to discover and further describe the epidemiology and potential pathogenicity of novel infectious viruses that pose a potential threat of bloodborne transmission, and (3) to define complementary host response biosignatures for transfusion-transmissible pathogens using transcriptome profiling, especially in asymptomatic infected donors. A key deliverable from this 5-year project will be implementation of the BloodSeq platform by public health agencies such as the American Red Cross for comprehensive bloodborne pathogen screening of the blood supply.The results from these studies will advance genomic sequencing technologies as validated screening tools to ensure transfusion safety, with significant clinical and public health implications.

Public Health Relevance

Pan-Genomic Approaches for Comprehensive Screening of Novel or Emerging Infectious Agents in Blood Outbreaks from emerging infectious agents, including Zika and Ebola virus, continually threaten the safety of the 15 million transfusions performed annually in the United States, but we lack diagnostic tools to comprehensively screen for these bloodborne pathogens. Here, we propose develop, validate, and implement pan-genomic approaches to screen for known or novel infectious agents in transfused blood. These include a BloodSeq sequencing platform that enables simultaneous detection of all American Association of Blood Banks (AABB)-priority pathogens, characterization of novel infectious viruses circulating in blood, and identification of human host response biosignatures for bloodborne infections in both symptomatic and asymptomatic individuals.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL105704-08
Application #
9685691
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Mondoro, Traci
Project Start
2011-04-01
Project End
2020-12-31
Budget Start
2019-01-01
Budget End
2019-12-31
Support Year
8
Fiscal Year
2019
Total Cost
Indirect Cost
Name
University of California San Francisco
Department
Pathology
Type
Schools of Medicine
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94118
Langelier, Charles; Zinter, Matt S; Kalantar, Katrina et al. (2018) Metagenomic Sequencing Detects Respiratory Pathogens in Hematopoietic Cellular Transplant Patients. Am J Respir Crit Care Med 197:524-528
Gu, Wei; Miller, Steve; Chiu, Charles Y (2018) Clinical Metagenomic Next-Generation Sequencing for Pathogen Detection. Annu Rev Pathol :
Dudley, Dawn M; Van Rompay, Koen K; Coffey, Lark L et al. (2018) Miscarriage and stillbirth following maternal Zika virus infection in nonhuman primates. Nat Med 24:1104-1107
Thézé, Julien; Li, Tony; du Plessis, Louis et al. (2018) Genomic Epidemiology Reconstructs the Introduction and Spread of Zika Virus in Central America and Mexico. Cell Host Microbe 23:855-864.e7
Sánchez-San Martín, Claudia; Li, Tony; Bouquet, Jerome et al. (2018) Differentiation enhances Zika virus infection of neuronal brain cells. Sci Rep 8:14543
Seferovic, Maxim; Sánchez-San Martín, Claudia; Tardif, Suzette D et al. (2018) Experimental Zika Virus Infection in the Pregnant Common Marmoset Induces Spontaneous Fetal Loss and Neurodevelopmental Abnormalities. Sci Rep 8:6851
Bouquet, Jerome; Gardy, Jennifer L; Brown, Scott et al. (2017) RNA-Seq Analysis of Gene Expression, Viral Pathogen, and B-Cell/T-Cell Receptor Signatures in Complex Chronic Disease. Clin Infect Dis 64:476-481
Faria, N R; Quick, J; Claro, I M et al. (2017) Establishment and cryptic transmission of Zika virus in Brazil and the Americas. Nature 546:406-410
Saito, Toshie; Miyagawa, Kazuya; Chen, Shih-Yu et al. (2017) Upregulation of Human Endogenous Retrovirus-K Is Linked to Immunity and Inflammation in Pulmonary Arterial Hypertension. Circulation 136:1920-1935
Castro-Wallace, Sarah L; Chiu, Charles Y; John, Kristen K et al. (2017) Nanopore DNA Sequencing and Genome Assembly on the International Space Station. Sci Rep 7:18022

Showing the most recent 10 out of 39 publications