For the past decade the advent of stent angioplasty and the even more recent use of drug eluting stents have resulted in a paradigm shift in the care of vascular disease. Deleterious sequelae of vascular interventions are the result of unavoidable mechanical damage to the vessel wall. Disruption of the endothelial monolayer exposes the underlying media and induces a cascade of cellular and biological events, resulting in abnormal vascular wall function. Strategies that enhance the number of endothelial cells in the vessel wall following injury may limit complications such as thrombosis, vasospasm, and neointimal formation, through reconstitution of a luminal barrier and cellular secretion of paracrine factors. Previous strategies to rapidly """"""""endothelialize"""""""" implanted devices did not show desired efficacy, safety, and ease of use required for clinical applications. Herein we propose a method for magnetic targeting of endothelial cells to stents based on use of a modest uniform magnetic field to both maximally magnetize the magnetic nanoparticle-loaded endothelial precursor cells and produce large local magnetic field gradients within the steel stent wire network. This mechanism will allow achieving maximized magnetic force that will result in efficient localization of endothelial cells at the blood vessel injured site. Our preliminary data using bovine aortic endothelial cells in the rat carotid-stenting model indicate on feasibility of this approach. In this project we plan to study more therapeutically relevant cells that are capable of differentiating into cells with endothelial phenotype (i.e. allogeneic blood outgrowth endothelial cells, BOEC and endothelial progenitor cells, EPC) derived from same species (rats) that will receive magnetic cell therapy.
Specific Aim 1 of the proposed research will focus on the development of protocols for isolation, culture and characterization of endothelial precursor cells to be used for further magnetic targeting studies.
Specific Aim 2 will concentrate on the optimization of protocols for cell loading by biodegradable magnetic nanoparticles, evaluating the effects of cell loading on cell's morphology, growth, and preservation of functional integrity.
This aim will also address some mechanistic aspects of magnetically loaded and manipulated EC cells, evaluating their gene expression profiles, adhesion and thrombogenicity.
Specific Aim 3 will be dedicated to quantitatively evaluate the efficiency of magnetic cell targeting in vivo using appropriate animal model, to investigate the organ biodistribution of the off-targeted endothelial cells as well as to examine the beneficial therapeutic effect on the injured vessel wall by magnetically localized allogeneic endothelial cells. The long term therapeutic effect will also be assessed. We sincerely believe that resulting data, coupled with concurrent pre-clinical work on magnetic implant development will provide a widely implementable strategy of magnetic cell targeting in vascular and other applications.

Public Health Relevance

The proposed approach has the potential to be a vital alternative to the currently used drug eluting stents (DES) which although have been shown to reduce the incidence of restenosis after stenting, but also result in delayed endothelialization leading to a later vascular complications requiring prolonged use of antiplatelet therapy. Our approach can provide the capability for an accelerated regeneration of vascular tissue via the efficient localization of endothelial cells to stented blood vessels, resulting in fewer restenosis-related complications on the long term scale. Additionally, the outcomes of this study will have broad general implications for targeted cell delivery in a number of therapeutic settings using magnetizable steel implants as targeting devices for the ordered deposition of cell-based therapies.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
1R01HL107771-01
Application #
8086191
Study Section
Nanotechnology Study Section (NANO)
Program Officer
Reid, Diane M
Project Start
2011-05-01
Project End
2015-02-28
Budget Start
2011-05-01
Budget End
2012-02-29
Support Year
1
Fiscal Year
2011
Total Cost
$386,250
Indirect Cost
Name
Drexel University
Department
Surgery
Type
Schools of Medicine
DUNS #
002604817
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Tickle, Jacqueline A; Poptani, Harish; Taylor, Arthur et al. (2018) Noninvasive imaging of nanoparticle-labeled transplant populations within polymer matrices for neural cell therapy. Nanomedicine (Lond) 13:1333-1348
Portnoy, Emma; Polyak, Boris; Inbar, Dorrit et al. (2016) Tracking inflammation in the epileptic rat brain by bi-functional fluorescent and magnetic nanoparticles. Nanomedicine 12:1335-45
Sapir-Lekhovitser, Yulia; Rotenberg, Menahem Y; Jopp, Juergen et al. (2016) Magnetically actuated tissue engineered scaffold: insights into mechanism of physical stimulation. Nanoscale 8:3386-99
Tickle, Jacqueline A; Jenkins, Stuart I; Polyak, Boris et al. (2016) Endocytotic potential governs magnetic particle loading in dividing neural cells: studying modes of particle inheritance. Nanomedicine (Lond) 11:345-58
Polyak, Boris; Cordovez, Bernardo (2016) How can we predict behavior of nanoparticles in vivo? Nanomedicine (Lond) 11:189-92
Orynbayeva, Zulfiya; Sensenig, Richard; Polyak, Boris (2015) Metabolic and structural integrity of magnetic nanoparticle-loaded primary endothelial cells for targeted cell therapy. Nanomedicine (Lond) 10:1555-68
Zohra, Fatema Tuj; Medved, Mikhail; Lazareva, Nina et al. (2015) Functional behavior and gene expression of magnetic nanoparticle-loaded primary endothelial cells for targeting vascular stents. Nanomedicine (Lond) 10:1391-406
Adams, Christopher F; Rai, Ahmad; Sneddon, Gregor et al. (2015) Increasing magnetite contents of polymeric magnetic particles dramatically improves labeling of neural stem cell transplant populations. Nanomedicine 11:19-29
Sapir, Yulia; Polyak, Boris; Cohen, Smadar (2014) Cardiac tissue engineering in magnetically actuated scaffolds. Nanotechnology 25:014009
Sapir, Yulia; Ruvinov, Emil; Polyak, Boris et al. (2014) Magnetically actuated alginate scaffold: a novel platform for promoting tissue organization and vascularization. Methods Mol Biol 1181:83-95

Showing the most recent 10 out of 13 publications