The function of the multifunctional Ca2+/calmodulin-dependent kinase II (CaMKII) remains poorly understood in the vasculature. Our data suggest that CaMKII is instrumental in mediating neointima formation and remodeling after vascular injury. Neointima formation and remodeling occur in vein graft failure after coronary artery bypass surgery, after balloon angioplasty and surgical endarterectomy and have a significant impact in terms of morbidity and health care cost. Our long-term goal is to study the function of CaMKII in the vasculature, specifically CaMKII modulation as new approach to treat vascular injury. The objective of this application is to determine how CaMKII is activated in injury, directy test whether CaMKII inhibition will confer disease resistance in vascular injury and delineate the dependance of VSMC migration and proliferation upon the oxidative activation of CaMKII. The central hypothesis of this application is that CaMKII is activated by oxidation of Met281/282 in vascular injury and that oxidative activation of CaMKII is necessary for neointimal hyperplasia, VSMC proliferation and migration. This hypothesis is based on our preliminary data that CaMKII is essential in neointima formation and remodeling after injury. Oxidized CaMKII (ox-CaMKII) is readily detected in the neointima after vascular injury. In addition, we have compelling evidence that key activators in the response to injury induce ox-CaMKII in vitro. The rationale of the proposed research is that understanding how CaMKII is activated after vascular injury, has the potential to translate into better strategies to prevent the deleterious effects after vascular injry. Guided by strong preliminary data, the central hypothesis will be tested in three specific aims: 1) Dissect the mechanisms of CaMKII activation in vascular injury in vivo; 2) Determine the role of methionine sulfoxide reductase A (MsrA), the enzyme that controls the balance between active ox-CaMKII and reduced inactive CaMKII, in the response to injury; 3) Dissect the mechanisms of CaMKII activation in VSMC migration, proliferation in vitro. In the first aim, a novel in vivo model will be used to test if the blockade of oxidative CaMKII activation is sufficient to abrogate the response to injury.
Under aim 2, we will define whether MsrA can modulate neointimal hyperplasia through ox-CaMKII.
In aim 3, we will delineate how CaMKII is activated by key cytokines and growth factors relevant for vascular injury in vitro and how the activation pathways correlate with VSMC migration and proliferation. The approach is innovative because of its use of novel in vivo models and specific tools to dissect CaMKII signaling. The proposed research is significant because it is expected to advance the field by identifying CaMKII activating events in vivo. Ultimately, such knowledge may allow for the development of new preventive strategies for vascular injury.

Public Health Relevance

The proposed research aims at understanding a key regulator in the response to vascular injury with the ultimate goal of exploring the therapeutic potential of its inhibition. It is relevant to public health because blood vessels respond to injur by forming blockages that can cause heart attacks and strokes, the most common causes of death in our nation. Thus, the proposed research is directly relevant to the part of the NIH's mission that pertains to foster research strategies, and their applications as a basis for protecting and improving health.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL108932-04
Application #
8822907
Study Section
Vascular Cell and Molecular Biology Study Section (VCMB)
Program Officer
Gao, Yunling
Project Start
2012-04-16
Project End
2016-03-31
Budget Start
2015-04-01
Budget End
2016-03-31
Support Year
4
Fiscal Year
2015
Total Cost
Indirect Cost
Name
University of Iowa
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
062761671
City
Iowa City
State
IA
Country
United States
Zip Code
52246
Nguyen, Emily K; Koval, Olha M; Noble, Paige et al. (2018) CaMKII (Ca2+/Calmodulin-Dependent Kinase II) in Mitochondria of Smooth Muscle Cells Controls Mitochondrial Mobility, Migration, and Neointima Formation. Arterioscler Thromb Vasc Biol 38:1333-1345
Pennington, Steven M; Klutho, Paula R; Xie, Litao et al. (2018) Defective protein repair under methionine sulfoxide A deletion drives autophagy and ARE-dependent gene transcription. Redox Biol 16:401-413
Kulhankova, Katarina; Kinney, Kyle J; Stach, Jessica M et al. (2017) The Superantigen Toxic Shock Syndrome Toxin-1 Alters Human Aortic Endothelial Cell Function. Infect Immun :
Murthy, Shubha; Koval, Olha M; Ramiro Diaz, Juan M et al. (2017) Endothelial CaMKII as a regulator of eNOS activity and NO-mediated vasoreactivity. PLoS One 12:e0186311
Sebag, Sara C; Koval, Olha M; Paschke, John D et al. (2017) Mitochondrial CaMKII inhibition in airway epithelium protects against allergic asthma. JCI Insight 2:e88297
Winters, Christopher J; Koval, Olha; Murthy, Shubha et al. (2016) CaMKII inhibition in type II pneumocytes protects from bleomycin-induced pulmonary fibrosis by preventing Ca2+-dependent apoptosis. Am J Physiol Lung Cell Mol Physiol 310:L86-94
Gu, Sean X; Blokhin, Ilya O; Wilson, Katina M et al. (2016) Protein methionine oxidation augments reperfusion injury in acute ischemic stroke. JCI Insight 1:
Bosetti, Francesca; Galis, Zorina S; Bynoe, Margaret S et al. (2016) ""Small Blood Vessels: Big Health Problems?"": Scientific Recommendations of the National Institutes of Health Workshop. J Am Heart Assoc 5:
Prasad, Anand M; Ketsawatsomkron, Pimonrat; Nuno, Daniel W et al. (2016) Role of CaMKII in Ang-II-dependent small artery remodeling. Vascul Pharmacol 87:172-179
Prasad, Anand M; Morgan, Donald A; Nuno, Daniel W et al. (2015) Calcium/calmodulin-dependent kinase II inhibition in smooth muscle reduces angiotensin II-induced hypertension by controlling aortic remodeling and baroreceptor function. J Am Heart Assoc 4:e001949

Showing the most recent 10 out of 16 publications