Heart disease is the leading cause of death in humans, and myocarditis is a predominant cause of heart failure in young adolescents. Patients affected with myocarditis can develop dilated cardiomyopathy (DCM), a common reason for heart transplantation, which to date is the only viable option for combating DCM. Myocarditis/DCM patients show antibodies to coxsackievirus B3 (CVB) and cardiac antigens, suggesting a role for CVB-mediated autoimmunity in the disease pathogenesis, but a direct causal link remains to be determined clinically. The long-term goal is to determine the autoimmune mechanisms of pathogens that commonly infect the cardiovascular system and initiate heart autoimmunity. The objective of this application is to determine whether chronic myocarditis that occurs in CVB infection due to an autoimmune response to cardiac antigens. The central hypothesis is that cardiac-specific CD4 T cells generated by mechanisms that involve molecular mimicry and epitope spreading mediate postinfectious myocarditis induced by CVB. This hypothesis will be tested in A/J mice that are highly susceptible to both autoimmune and viral myocarditis, the histologic features of which resemble those in human disease. The project's two specific aims are to: 1) Delineate the role of cross-reactive CD4 T cells in the mediation of CVB myocarditis. Panel of mimicry epitopes identified from the CVB proteome are capable of inducing pathogenic cross-reactive T cells for three cardiac antigens as evaluated by T cell proliferation assay and cytokine responses. [2) Investigate epitope spreading as an autoimmune mechanism of postinfectious myocarditis induced by CVB. Using major histocompatibility complex (MHC) class II dextramers for cardiac myosin heavy chain (Myhc)- 334-352, the team has demonstrated that myocarditis-susceptible A/J mice, show the generation of Myhc--specific T cells that transfer disease to naive mice. These observations provide a compelling rationale to test the hypothesis that CVB infection induces the generation of cardiac-reactive T cells with multiple antigen specificities through epitope spreading.
The specific aims will be achieved by measurement of T cell responses, MHC class II dextramer staining, cytokine analysis, magnetic resonance microscopy imaging, active immunization and adoptive transfer experiments, and histology. The proposed approach is innovative, as it addresses the fundamental question of whether autoimmune response contributes to postinfectious myocarditis induced by CVB at the level of antigen specificity. The proposed research is significant, as it may provide a basis for future investigations into the role of cardic-reactive T cells that might be generated in cardiomyopathy patients as a result of exposure to CVB. These studies may then create opportunities to derive immunotherapies in the form of altered peptide ligands and tolerogens as antigen-specific treatment modalities, including personalized therapies, for DCM patients.]

Public Health Relevance

The proposed research has relevance to public health because it investigates the mechanisms by which coxsackievirus B3-a suspect in the causation of myocarditis, a predominant cause of heart failure in young adolescents-can trigger self-reactive immune responses that target the destruction of heart tissue. This research is relevant to the mission of NIH because it is expected to demonstrate the disease-inducing role of CD4 T cells, which are generally implicated in various autoimmune diseases (e.g., myocarditis), thus contributing to the fundamental body of knowledge needed to develop therapies that can potentially be directed against these disease-inducing cells.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL114669-03
Application #
8853940
Study Section
Atherosclerosis and Inflammation of the Cardiovascular System Study Section (AICS)
Program Officer
Burns, Kristin
Project Start
2013-08-14
Project End
2016-05-31
Budget Start
2015-06-01
Budget End
2016-05-31
Support Year
3
Fiscal Year
2015
Total Cost
Indirect Cost
Name
University of Nebraska Lincoln
Department
Veterinary Sciences
Type
Earth Sciences/Resources
DUNS #
555456995
City
Lincoln
State
NE
Country
United States
Zip Code
68583
Krishnan, Bharathi; Massilamany, Chandirasegaran; Basavalingappa, Rakesh H et al. (2018) Epitope Mapping of SERCA2a Identifies an Antigenic Determinant That Induces Mainly Atrial Myocarditis in A/J Mice. J Immunol 200:523-537
Basavalingappa, Rakesh H; Massilamany, Chandirasegaran; Krishnan, Bharathi et al. (2017) ?1-Adrenergic Receptor Contains Multiple IAk and IEk Binding Epitopes That Induce T Cell Responses with Varying Degrees of Autoimmune Myocarditis in A/J Mice. Front Immunol 8:1567
Gebregiworgis, Teklab; Nielsen, Helle H; Massilamany, Chandirasegaran et al. (2016) A Urinary Metabolic Signature for Multiple Sclerosis and Neuromyelitis Optica. J Proteome Res 15:659-66
Massilamany, Chandirasegaran; Gangaplara, Arunakumar; Basavalingappa, Rakesh H et al. (2016) Localization of CD8 T cell epitope within cardiac myosin heavy chain-?334-352 that induces autoimmune myocarditis in A/J mice. Int J Cardiol 202:311-21
Basavalingappa, Rakesh H; Massilamany, Chandirasegaran; Krishnan, Bharathi et al. (2016) Identification of an Epitope from Adenine Nucleotide Translocator 1 That Induces Inflammation in Heart in A/J Mice. Am J Pathol 186:3160-3175
Massilamany, Chandirasegaran; Mohammed, Akram; Loy, John Dustin et al. (2016) Whole genomic sequence analysis of Bacillus infantis: defining the genetic blueprint of strain NRRL B-14911, an emerging cardiopathogenic microbe. BMC Genomics 17 Suppl 7:511
Massilamany, Chandirasegaran; Koenig, Andreas; Reddy, Jay et al. (2016) Autoimmunity in picornavirus infections. Curr Opin Virol 16:8-14
Krishnan, Bharathi; Massilamany, Chandirasegaran; Basavalingappa, Rakesh H et al. (2015) Versatility of using major histocompatibility complex class II dextramers for derivation and characterization of antigen-specific, autoreactive T cell hybridomas. J Immunol Methods 426:86-94
Massilamany, Chandirasegaran; Gangaplara, Arunakumar; Basavalingappa, Rakesh H et al. (2015) Mutations in the 5' NTR and the Non-Structural Protein 3A of the Coxsackievirus B3 Selectively Attenuate Myocarditogenicity. PLoS One 10:e0131052
Massilamany, Chandirasegaran; Gangaplara, Arunakumar; Basavalingappa, Rakesh H et al. (2015) Correction: Mutations in the 5' NTR and the Non-Structural Protein 3A of the Coxsackievirus B3 Selectively Attenuate Myocarditogenicity. PLoS One 10:e0137433

Showing the most recent 10 out of 17 publications