A better understanding of lung development will have a broad and significant impact on perinatal health and facilitate efforts to direct the differentiaion of pulmonary tissue from human stem cells. Embryonic lung development is regulated by a series of epithelial-mesenchymal interactions. Two signaling pathways have been implicated in the specification of Nxk2.1-expressing lung progenitors from the foregut epithelium;FGFs and Wnt2/2b. After pulmonary specification further crosstalk between Wnt, FGF, Shh, TGF-?, BMP and RA pathways regulate lung bud growth, differentiation and morphogenesis. Despite recent progress a number of critical unanswered questions remain. First, the molecular pathways upstream of Wnt2/2b are undefined. It is unclear if early FGF and Wnt2/2b act in an epistatic pathway and their target genes are largely unknown. Finally the relationship between FGF/Wnt-mediated lung specification and the pathways regulating lung bud growth are poorly understood. Our preliminary data support the hypothesis that the Odd skipped related (Osr) zinc finger transcription factors are key components of an epithelial-mesenchymal signaling cascade linking early foregut patterning by FGFs to Wnt-mediated pulmonary specification and RA-regulated lung bud growth into a unified molecular pathway. This proposal, which uses an innovative multi-system approach combining the experimental advantages of Xenopus embryology and mouse genetics, has the potential to significantly advance our understanding of early lung development.
Aim 1 : Determine the mechanisms by which Osr1/2 transcription factors regulate the molecular pathway controlling Xenopus lung development.
Aim 2 : Test the hypothesis that Osr1 and Osr2 are required for lung development in mice.

Public Health Relevance

A better understanding of lung development will have a significant impact on perinatal health and facilitate efforts to direct the differentiation of lung tissue from human stem cells. Despite recent progress there are a number of critical unanswered questions that remain in our understanding of embryonic lung development. This proposal addresses some of these and tests the hypothesis that Osr zinc finger transcription factors regulate a signaling cascade linking early foregut patterning, pulmonary specification and lung bud growth into a unified molecular pathway.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL114898-03
Application #
8693648
Study Section
Lung Injury, Repair, and Remodeling Study Section (LIRR)
Program Officer
Lin, Sara
Project Start
2012-08-10
Project End
2017-06-30
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
3
Fiscal Year
2014
Total Cost
Indirect Cost
City
Cincinnati
State
OH
Country
United States
Zip Code
45229
Steimle, Jeffrey D; Rankin, Scott A; Slagle, Christopher E et al. (2018) Evolutionarily conserved Tbx5-Wnt2/2b pathway orchestrates cardiopulmonary development. Proc Natl Acad Sci U S A 115:E10615-E10624
Rankin, Scott A; McCracken, Kyle W; Luedeke, David M et al. (2018) Timing is everything: Reiterative Wnt, BMP and RA signaling regulate developmental competence during endoderm organogenesis. Dev Biol 434:121-132
Han, Lu; Xu, Jingyue; Grigg, Emily et al. (2017) Osr1 functions downstream of Hedgehog pathway to regulate foregut development. Dev Biol 427:72-83
Stevens, Mariana L; Chaturvedi, Praneet; Rankin, Scott A et al. (2017) Genomic integration of Wnt/?-catenin and BMP/Smad1 signaling coordinates foregut and hindgut transcriptional programs. Development 144:1283-1295
Aslan, Yetki; Tadjuidje, Emmanuel; Zorn, Aaron M et al. (2017) High-efficiency non-mosaic CRISPR-mediated knock-in and indel mutation in F0 Xenopus. Development 144:2852-2858
Rankin, Scott A; Han, Lu; McCracken, Kyle W et al. (2016) A Retinoic Acid-Hedgehog Cascade Coordinates Mesoderm-Inducing Signals and Endoderm Competence during Lung Specification. Cell Rep 16:66-78
LaBonne, Carole; Zorn, Aaron M (2015) Modeling human development and disease in Xenopus. Preface. Dev Biol 408:179
Rankin, Scott A; Thi Tran, Hong; Wlizla, Marcin et al. (2015) A Molecular atlas of Xenopus respiratory system development. Dev Dyn 244:69-85
Kurmann, Anita A; Serra, Maria; Hawkins, Finn et al. (2015) Regeneration of Thyroid Function by Transplantation of Differentiated Pluripotent Stem Cells. Cell Stem Cell 17:527-42
Rankin, Scott A; Zorn, Aaron M (2014) Gene regulatory networks governing lung specification. J Cell Biochem 115:1343-50