The 10-member sarcomeric myosin heavy chain gene family has been studied extensively and mutations in half of its members have been implicated in disease. Myosin motors convert chemical energy into mechanical force by amplifying the ATP-driven conformational rotation of myosin?s lever arm, which consists of a helical pliant region and the ?-helix of the heavy chain stabilized and stiffened by essential and regulatory light chains; hereafter referred to as the lever arm. While a great deal of study has been devoted to the catalytic domain and converter, the lever arm has often been treated as simply a semi-rigid extension of the converter to amplify the stroke size of the motor. For a given isoform of myosin the entire lever arm is highly conserved across species, but it is highly variant amongst the 10 isoforms, suggesting that the sequences of lever arm ?- helices confer specific functions. Given the high sequence conservation of the ?-cardiac lever arm across species and the high density of pathogenic mutations in it, we hypothesize that this region is an important regulatory domain that modulates myosin function and testing that hypothesis is the focus of this proposal. We propose an interdisciplinary collaboration among the Spudich, Perkins and Leinwand laboratories to study the effects of disease-causing mutations in the lever arm by integrating the biophysical characterization of isolated lever arms and myosin motor functional assays with cardiac cell biology. In the previous grant period, the Leinwand, Spudich and Geeves laboratories produced and characterized a number of disease-causing mutations of the human ?-cardiac myosin motor for their biochemical and kinetic properties, but none of these studies included lever arm mutations. Because of clinical hypercontractility of hypertrophic cardiomyopathy (HCM) patients and hypocontractility of dilated cardiomyopathy (DCM) patients, we hypothesize that HCM mutations will most likely increase the stiffness of the lever arm, whereas, DCM mutations will cause the lever arm to be less stiff.
In Aim I, we will determine the biochemical and mechanical properties of the lever arm of WT ?-myosin using atomic force microscopy (AFM). AFM has emerged as a powerful tool for investigating the elasticity of proteins in addition to probing their folding/unfolding dynamics. Until now, AFM technology did not have the resolution to study the mechanics of the 9-nm long lever arm. However, the Perkins lab?s recent advances in single-molecule AFM techniques will enable us to compare the mechanical properties of the WT -cardiac myosin lever arm ?-helix to ones carrying cardiomyopathy-causing mutations.
In Aim II, we will measure the impact of the lever arm mutations on in vitro subfragment-1 (S1) motor function using ATPase, gliding filament and optical tweezer assays. Finally, in Aim III we will integrate these biophysical and biomechanical findings into cells by introducing WT and lever arm mutant full length ?-cardiac myosins into cardiac myocytes and determining their effects on sarcomere integrity, sarcomere dynamics and contractility.

Public Health Relevance

Genetic heart disease and is the leading cause of sudden death in young people. This disease can be caused by mutations in the motor protein of the heart, myosin. It is not understood how these motors are affected by these mutations. This work will lead to an understanding of what is wrong with these motors and may lead the way to novel treatments.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
3R01HL117138-05S1
Application #
9771013
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Wong, Renee P
Project Start
2013-08-20
Project End
2022-01-31
Budget Start
2018-09-10
Budget End
2019-01-31
Support Year
5
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of Colorado at Boulder
Department
Biochemistry
Type
Schools of Arts and Sciences
DUNS #
007431505
City
Boulder
State
CO
Country
United States
Zip Code
80303
Liu, Chao; Kawana, Masataka; Song, Dan et al. (2018) Controlling load-dependent kinetics of ?-cardiac myosin at the single-molecule level. Nat Struct Mol Biol 25:505-514
Trivedi, Darshan V; Adhikari, Arjun S; Sarkar, Saswata S et al. (2018) Hypertrophic cardiomyopathy and the myosin mesa: viewing an old disease in a new light. Biophys Rev 10:27-48
Kawana, Masataka; Sarkar, Saswata S; Sutton, Shirley et al. (2017) Biophysical properties of human ?-cardiac myosin with converter mutations that cause hypertrophic cardiomyopathy. Sci Adv 3:e1601959
Gangadharan, Binnu; Sunitha, Margaret S; Mukherjee, Souhrid et al. (2017) Molecular mechanisms and structural features of cardiomyopathy-causing troponin T mutants in the tropomyosin overlap region. Proc Natl Acad Sci U S A 114:11115-11120
Vega, Rick B; Konhilas, John P; Kelly, Daniel P et al. (2017) Molecular Mechanisms Underlying Cardiac Adaptation to Exercise. Cell Metab 25:1012-1026
Sung, J; Mortensen, K I; Spudich, J A et al. (2017) How to Measure Load-Dependent Kinetics of Individual Motor Molecules Without a Force-Clamp. Methods Enzymol 582:1-29
Nag, Suman; Trivedi, Darshan V; Sarkar, Saswata S et al. (2017) The myosin mesa and the basis of hypercontractility caused by hypertrophic cardiomyopathy mutations. Nat Struct Mol Biol 24:525-533
Spudich, James A; Aksel, Tural; Bartholomew, Sadie R et al. (2016) Effects of hypertrophic and dilated cardiomyopathy mutations on power output by human ?-cardiac myosin. J Exp Biol 219:161-7
Peter, Angela K; Bjerke, Maureen A; Leinwand, Leslie A (2016) Biology of the cardiac myocyte in heart disease. Mol Biol Cell 27:2149-60
Pugach, Emily K; Blenck, Christa L; Dragavon, Joseph M et al. (2016) Estrogen receptor profiling and activity in cardiac myocytes. Mol Cell Endocrinol 431:62-70

Showing the most recent 10 out of 18 publications