Tie1 and Tek (also known as Tie2) are endothelial protein receptor tyrosine kinases (RTKs). Along with the vascular endothelial growth factor (VEGF) receptor, these are the only known endothelial cell-specific RTKs. Due to embryonic lethality of panendotheilal deletion of either Tie 1 or Tie2 the exact roles and mechanisms of Tie1 or Tie2 in regulating cardiac development has not been clearly delineated. Furthermore the ligand(s) for Tie1 or the targets of Tie1 activation have not been identified. We hypothesize that in the cardiovascular system Tie1 is not only an inhibitory co-receptor for Tie2 activation, but also capable of signaling autonomously of Tie2. We therefore propose to: 1) Determine the unique functions of Tie1 and Tie2 signaling during early and late stages of cardiac development in vivo: Recently generated mice harboring a floxed allele of Tie1 or Tie2 will be used in conjunction with a novel early endocardial specific (Nfatc1Cre) or a later valvular endocardial Cre line (Nfatc1enCre) to produce stage specific cardiac deletion of Tie1 and Tie2 throughout the continuum of heart development in utero. Morphological and functional analysis will be used to characterize the unique phenotype that results from cardiac specific RTK attenuation. 2) Define the specific Tie1-Tie2 interactions that are required for normal cardiac morphogenesis at both early and late stages of heart formation in vivo. Recombinase mediated cassette exchange (RMCE) will be used to evaluate potential critical domains of Tie1-Tie2 interaction specifically in the endocardium. We will generate a series of cDNA knock-in mice lacking the extracellular domain (ECD), intracellular domain (ICD) as well as point mutations in critical tyrosine kinase domains in the cytoplasmic region of Tie1 (tyrosine to phenylalanine/Y1113F and lysine to alanine/K866A). These animals will be crossed to endocardial specific Cre lines and evaluated for specific defects in cardiac development. 3) Delineate down-stream targets of Tie1 activation in the cardiovascular system. In the absence of a known ligand for Tie1 activation, hemodynamic activation of Tie1 signaling will be used to evaluate the effect of defined deletion / mutations of Tie1. Immortalized endocardial cell lines derived from the conditional Tie1 mutants will be exposed to altered shear stress, turbulence and stretch and evaluated for alterations in previously described signal transduction pathways attributed to Tie activation. The most informative Tie1 mutant animals will be used for RNA-Seq and bioinformatic analysis for construction of signaling networks that will define a unique singling signature for Tie1 and help delineate endothelial cell autonomous and non-autonomous signaling pathways in the heart.

Public Health Relevance

Upon completion, these experiments will have, for the first time, characterized the mechanism of Tie1- Tie 2 interactions in modulating critical events in cardiac ontogeny. The critical importance of the endocardium in regulating cardiac development and effecting cardiac response to injury is not well understood. The information gained by these studies will potentially be exploited for developing new therapeutic strategies derived from the new knowledge of TIE/TEK signaling mechanisms obtained.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
6R01HL118386-04
Application #
9066778
Study Section
Cardiovascular Differentiation and Development Study Section (CDD)
Program Officer
Schramm, Charlene A
Project Start
2013-06-01
Project End
2018-05-31
Budget Start
2016-06-01
Budget End
2017-05-31
Support Year
4
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Vanderbilt University Medical Center
Department
Type
DUNS #
079917897
City
Nashville
State
TN
Country
United States
Zip Code
37232
La Porta, Silvia; Roth, Lise; Singhal, Mahak et al. (2018) Endothelial Tie1-mediated angiogenesis and vascular abnormalization promote tumor progression and metastasis. J Clin Invest 128:834-845
Angel, Peggi M; Baldwin, H Scott; Gottlieb Sen, Danielle et al. (2017) Advances in MALDI imaging mass spectrometry of proteins in cardiac tissue, including the heart valve. Biochim Biophys Acta Proteins Proteom 1865:927-935
Nixon, Benjamin R; Williams, Alexandra F; Glennon, Michael S et al. (2017) Alterations in sarcomere function modify the hyperplastic to hypertrophic transition phase of mammalian cardiomyocyte development. JCI Insight 2:e90656
Angel, P M; Narmoneva, D A; Sewell-Loftin, M K et al. (2017) Proteomic Alterations Associated with Biomechanical Dysfunction are Early Processes in the Emilin1 Deficient Mouse Model of Aortic Valve Disease. Ann Biomed Eng 45:2548-2562
Dees, Ellen; Baldwin, H Scott (2016) Making a heart: advances in understanding the mechanisms of cardiac development. Curr Opin Pediatr 28:584-9
Chen, Joseph; Ryzhova, Larisa M; Sewell-Loftin, M K et al. (2015) Notch1 Mutation Leads to Valvular Calcification Through Enhanced Myofibroblast Mechanotransduction. Arterioscler Thromb Vasc Biol 35:1597-605
Savant, Soniya; La Porta, Silvia; Budnik, Annika et al. (2015) The Orphan Receptor Tie1 Controls Angiogenesis and Vascular Remodeling by Differentially Regulating Tie2 in Tip and Stalk Cells. Cell Rep 12:1761-73
Qu, Xianghu; Zhou, Bin; Scott Baldwin, H (2015) Tie1 is required for lymphatic valve and collecting vessel development. Dev Biol 399:117-28
Sewell-Loftin, Mary Kathryn; DeLaughter, Daniel M; Peacock, Jon R et al. (2014) Myocardial contraction and hyaluronic acid mechanotransduction in epithelial-to-mesenchymal transformation of endocardial cells. Biomaterials 35:2809-15
Wu, Bingruo; Baldwin, H Scott; Zhou, Bin (2013) Nfatc1 directs the endocardial progenitor cells to make heart valve primordium. Trends Cardiovasc Med 23:294-300