Diabetic cardiomyopathy is a complex disorder that emanates from the chronic and excessive use of fatty acids to fuel contractile function in diabetic myocardium due to the lack of insulin signaling. However, the nearly exclusive use of fatty acids for fuel in diabetic myocardium results in widespread metabolomic dysregulation that precipitates multiple deleterious alterations in membrane structure and function. Consequences of these membrane-mediated abnormalities in diabetic myocardium include hemodynamic compromise, defective excitation-contraction coupling and mitochondrial dysfunction that collectively conspire to promote the progression of heart failure in diabetic patients. Moreover, the profound alterations in substrate utilization in diabetic myocardium result in the accumulation of multiple dysregulated metabolites that lead to maladaptive alterations in interwoven cardiac myocyte signaling networks. Previously, through genetic, pharmacologic and chemical biological approaches, we have identified three major phospholipases and lipases in myocardium iPLA2? (PNPLA9), iPLA2? (PNPLA8), and iPLA2? (PNPLA2;ATGL) that likely serve as principal mediators of myocardial hemodynamic dysfunction, electrophysiologic alterations and maladaptive remodeling in diabetic myocardium. Recently, we demonstrated that iPLA2g and its downstream signaling metabolites are key regulators of the mitochondrial permeability transition pore which is responsible for necrosis, necroptosis, and electrical instability in diabetic myocardium subjected to ischemia. Accordingly, in Specific Aim 1, we will use the novel cardiac myocyte specific iPLA2g conditional knock out mouse we generated to determine if iPLA2g loss of function attenuates acute ischemic injury, electrophysiologic instability and the maladaptive generation of lipid 2nd messengers in diabetic myocardium. Furthermore, we demonstrated that exposure of mitochondria to calcium ion results in the activation of iPLA2g leading to the release of arachidonic acid, 2-arachidonoyl lysophosphatidylcholine, and the subsequent production of multiple downstream biologically active lipid 2nd messengers. Accordingly, iPLA2g-dependent alterations in lipid 2nd messenger production will be examined employing integrative mass spectrometric platforms we developed in conjunction with the cardiac myocyte specific iPLA2g loss of function mouse.
In Specific Aim 2, we will determine the molecular mechanisms through which acyl-CoA facilitates CaMKII phosphorylation and activation of iPLA2b. The activating phosphosite(s) will be identified, mutated and their mechanistic importance in CaMKII-mediated activation of iPLA2b in diabetic myocardium and diabetic myocardium rendered ischemic will be explored.
In Specific Aim 3, the role(s) of iPLA2z (ATGL;PNPLA2) in catalyzing the bidirectional flux of lipids through triglyceride hydrolysis, transacylation and acyltransferase activities will e determined. The participation of iPLA2z in generating lipid 2nd messengers in diabetic myocardium will be examined using cardiac myocyte specific iPLA2z null mice and the effects of iPLA2z genetic ablation on myocardial function in the diabetic state will be explored. Collectively, these studies are a synergistic multidisciplinary approach to identify the chemical mechanisms mediating diabetic cardiomyopathy.

Public Health Relevance

Diabetes is rapidly increasing in industrialized societies due to an increase in caloric intake that typically contains excessive amounts of fat. The major cause of death from diabetes is heart disease due to heart failure or sudden death. In diabetic patients, the heart uses excessive amounts of fat to fuel contractile function. However, the chronic and excessive reliance of fat to fuel heart contractions results in widespread changes in the structure and function of heart cell membranes. These studies are an integrated approach to understand the mechanisms mediating membrane dysfunction in diabetic hearts to identify novel therapies for heart disease in diabetic patients.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL118639-02
Application #
8666047
Study Section
Biochemistry and Biophysics of Membranes Study Section (BBM)
Program Officer
Wang, Lan-Hsiang
Project Start
2013-06-01
Project End
2017-05-31
Budget Start
2014-06-01
Budget End
2015-05-31
Support Year
2
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Washington University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Jenkins, Christopher M; Yang, Kui; Liu, Gaoyuan et al. (2018) Cytochrome c is an oxidative stress-activated plasmalogenase that cleaves plasmenylcholine and plasmenylethanolamine at the sn-1 vinyl ether linkage. J Biol Chem 293:8693-8709
Malley, Konstantin R; Koroleva, Olga; Miller, Ian et al. (2018) The structure of iPLA2? reveals dimeric active sites and suggests mechanisms of regulation and localization. Nat Commun 9:765
Kuo, Andrew; Lee, Monica Y; Yang, Kui et al. (2018) Caveolin-1 regulates lipid droplet metabolism in endothelial cells via autocrine prostacyclin-stimulated, cAMP-mediated lipolysis. J Biol Chem 293:973-983
Moon, Sung Ho; Liu, Xinping; Cedars, Ari M et al. (2018) Heart failure-induced activation of phospholipase iPLA2? generates hydroxyeicosatetraenoic acids opening the mitochondrial permeability transition pore. J Biol Chem 293:115-129
Liu, Gao-Yuan; Moon, Sung Ho; Jenkins, Christopher M et al. (2017) The phospholipase iPLA2? is a major mediator releasing oxidized aliphatic chains from cardiolipin, integrating mitochondrial bioenergetics and signaling. J Biol Chem 292:10672-10684
Moon, Sung Ho; Mancuso, David J; Sims, Harold F et al. (2016) Cardiac Myocyte-specific Knock-out of Calcium-independent Phospholipase A2? (iPLA2?) Decreases Oxidized Fatty Acids during Ischemia/Reperfusion and Reduces Infarct Size. J Biol Chem 291:19687-700
Yao, Cong-Hui; Fowle-Grider, Ronald; Mahieu, Nathanial G et al. (2016) Exogenous Fatty Acids Are the Preferred Source of Membrane Lipids in Proliferating Fibroblasts. Cell Chem Biol 23:483-93
Yang, Kui; Dilthey, Beverly G; Gross, Richard W (2016) Shotgun Lipidomics Approach to Stabilize the Regiospecificity of Monoglycerides Using a Facile Low-Temperature Derivatization Enabling Their Definitive Identification and Quantitation. Anal Chem 88:9459-9468
Liu, Xinping; Moon, Sung Ho; Jenkins, Christopher M et al. (2016) Cyclooxygenase-2 Mediated Oxidation of 2-Arachidonoyl-Lysophospholipids Identifies Unknown Lipid Signaling Pathways. Cell Chem Biol 23:1217-1227
Yao, Cong-Hui; Liu, Gao-Yuan; Yang, Kui et al. (2016) Inaccurate quantitation of palmitate in metabolomics and isotope tracer studies due to plastics. Metabolomics 12:

Showing the most recent 10 out of 18 publications