Abdominal aortic aneurysm (AAA) disease is a common, morbid and highly lethal disease of primarily older patients. Importantly, there are currently no therapeutic strategies that limit the growth of aneurysms, due in large part to a lack of understanding of the underlying molecular mechanisms of disease and progression. In addition to advanced age, genetic predilection, and male sex, the most important risk factor for AAA is a history of tobacco use. We have found that supplementation of two preclinical animal models of AAA with the major tobacco component, nicotine, causes accelerated disease formation and enhanced inflammatory signaling. These effects are associated with downregulation of microRNA (miR)-24. Given that many of its gene targets are pro-inflammatory, miR-24 is a prime suspect in the chronic inflammation and accelerated AAA development associated with nicotine supplementation and may, therefore, offer a therapeutic target. We hypothesize that nicotine causes downregulation of aortic miR-24, resulting in elevated expression of genes related to inflammation and accelerated AAA disease. Conversely, enhancing miR-24 expression and activity within the aortic wall will have therapeutic benefit.
In Specific Aim 1, we will use cell culture models as well as pharmacological and molecular methods to delineate the signaling events initiated by nicotine that result in decreased miR-24 levels.
In Specific Aim 2, we will determine the downstream effects of reduced miR-24 on inflamamtiory gene expression and cellular function. Finally, in Specific Aim 3, we will modulate miR-24 levels in vivo to evaluate the effects upon AAA formation.
These specific aims will investigate a novel mechanism that may underlie nicotine-induced vascular inflammation and accelerated aneurysm formation as well as provide the basis for advancing future research and clinical translation.

Public Health Relevance

Our preliminary data indicates that the major tobacco component, nicotine, enhances vascular inflammation and abdominal aortic aneurysm (AAA) disease in preclinical animal models in association with decreased microRNA-24. We proposed to use a combination of molecular and physiological models to clarify the underlying mechanism of how miR-24 can regulate AAA formation.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
1R01HL122939-01
Application #
8689731
Study Section
Atherosclerosis and Inflammation of the Cardiovascular System Study Section (AICS)
Program Officer
Tolunay, Eser
Project Start
2014-04-01
Project End
2018-03-31
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
1
Fiscal Year
2014
Total Cost
$352,500
Indirect Cost
$102,500
Name
Palo Alto Institute for Research & Edu, Inc.
Department
Type
DUNS #
624218814
City
Palo Alto
State
CA
Country
United States
Zip Code
94304
Li, Daniel Y; Busch, Albert; Jin, Hong et al. (2018) H19 Induces Abdominal Aortic Aneurysm Development and Progression. Circulation 138:1551-1568
Raaz, Uwe; Zöllner, Alexander M; Schellinger, Isabel N et al. (2016) Response to Letters Regarding Article, ""Segmental Aortic Stiffening Contributes to Experimental Abdominal Aortic Aneurysm Development"". Circulation 133:e11-2
Azuma, Junya; Wong, Ronald J; Morisawa, Takeshi et al. (2016) Heme Oxygenase-1 Expression Affects Murine Abdominal Aortic Aneurysm Progression. PLoS One 11:e0149288
Kayama, Yosuke; Raaz, Uwe; Jagger, Ann et al. (2015) Diabetic Cardiovascular Disease Induced by Oxidative Stress. Int J Mol Sci 16:25234-63
Wang, Dong; Deuse, Tobias; Stubbendorff, Mandy et al. (2015) Local MicroRNA Modulation Using a Novel Anti-miR-21-Eluting Stent Effectively Prevents Experimental In-Stent Restenosis. Arterioscler Thromb Vasc Biol 35:1945-53
Maegdefessel, Lars; Spin, Joshua M; Tsao, Philip S (2014) New ways to dismantle a ticking time bomb: microRNA 712/205 and abdominal aortic aneurysm development. Arterioscler Thromb Vasc Biol 34:1339-40
Spin, Joshua M; Tsao, Philip S (2014) Battle of the bulge: miR-195 versus miR-29b in aortic aneurysm. Circ Res 115:812-3
Maegdefessel, Lars; Spin, Joshua M; Raaz, Uwe et al. (2014) miR-24 limits aortic vascular inflammation and murine abdominal aneurysm development. Nat Commun 5:5214