Ischemic heart disease remains a leading cause of morbidity and mortality in the industrialized world, and prognosis after acute coronary syndromes is directly proportional to the extent of myocardial injury. A growing body of literature suggests that cardiac mitochondria are critical determinants of tissue viability. Recent clinical trials report that targeting mitochondria showed promise in reducing injury and improving patient outcomes. In spite of these exciting findings, the mechanisms that lead to mitochondrial dysfunction during the course of a myocardial infarction are not fully understood. In particular, there is a fundamental gap in our understanding of how changes in mitochondrial membranes directly hinder post-ischemic mitochondrial respiration. The long-term goal is to develop novel mitochondria-specific interventions that preserve cardiac tissue during times of metabolic stress. The objectives of this proposal are to elucidate the role of the mitochondrial membrane lipid environment on post-ischemic respiratory activity, and to determine if a mitochondria-directed peptide salvages tissue by optimizing lipid-dependent respiration. The central hypothesis is that post-ischemic mitochondrial respiratory function is compromised due to a disruption in the molecular organization of the inner mitochondrial membrane. This hypothesis is based on strong preliminary data showing ischemia-reperfusion decreases mitochondrial membrane fluidity, which prevents proper assembly of respiratory super complexes. Furthermore, preliminary evidence indicates that a cell- permeable, cardiolipin-targeted peptide protects the heart by rescuing the disruption in membrane fluidity. To accomplish the objectives, two specific hypotheses will be tested.
Specific Aim 1 will test the hypothesis that decreases in mitochondrial membrane fluidity promote mitochondrial dysfunction and reperfusion injury. Innovative approaches include assessment of mitochondrial membrane fluidity using both head group- and acyl side chain-sensitive probes, simultaneous measurement of mitochondrial membrane fluidity and respiration, sophisticated imaging of cardiolipin dynamics in ventricular myocytes and intact hearts, and model membrane systems that recapitulate changes in heart mitochondria during ischemia-reperfusion.
Specific Aim 2 will test the hypothesis that dysfunctional assembly of respiratory super complexes contributes to reperfusion injury. A comprehensive examination of post-ischemic respiration includes respiration and sophisticated imaging studies in perfused hearts, permeabilized fibers, isolated mitochondria, and isolated respiratory super complex bands. The efficacy of cardiolipin-targeting peptide in preserving mitochondrial respiration will be tested vertically across models. The proposed research is significant as it is expected to expand understanding of the interaction of mitochondrial lipids and functional respirasomes during acute coronary syndromes. Ultimately, these studies have the potential to foster development of new therapies that reduce the burden of ischemic heart disease.

Public Health Relevance

This project is relevant to public health because it will help determine the underlying causes for heart damage during a heart attack. Cardiac morbidity/mortality is directly related to the extent of tissue injury, and learning how to keep heart tissue alive will help reduce the burden of ischemic heart disease. As our studies seek to discover new treatments for heart attack patients, this project is consistent with the mission of the NIH.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL123647-04
Application #
9304325
Study Section
Myocardial Ischemia and Metabolism Study Section (MIM)
Program Officer
Wong, Renee P
Project Start
2015-07-01
Project End
2019-06-30
Budget Start
2017-07-01
Budget End
2018-06-30
Support Year
4
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Virginia Polytechnic Institute and State University
Department
Nutrition
Type
Earth Sciences/Resources
DUNS #
003137015
City
Blacksburg
State
VA
Country
United States
Zip Code
24061
Goswami, Ishan; Perry, Justin B; Allen, Mitchell E et al. (2018) Influence of Pulsed Electric Fields and Mitochondria-Cytoskeleton Interactions on Cell Respiration. Biophys J 114:2951-2964
Pennington, Edward Ross; Sullivan, E Madison; Fix, Amy et al. (2018) Proteolipid domains form in biomimetic and cardiac mitochondrial vesicles and are regulated by cardiolipin concentration but not monolyso-cardiolipin. J Biol Chem 293:15933-15946
Bitner, Benjamin F; Ray, Jason D; Kener, Kyle B et al. (2018) Common gut microbial metabolites of dietary flavonoids exert potent protective activities in ?-cells and skeletal muscle cells. J Nutr Biochem 62:95-107
Torres, Maria J; Kew, Kim A; Ryan, Terence E et al. (2018) 17?-Estradiol Directly Lowers Mitochondrial Membrane Microviscosity and Improves Bioenergetic Function in Skeletal Muscle. Cell Metab 27:167-179.e7
Ryan, Terence E; Yamaguchi, Dean J; Schmidt, Cameron A et al. (2018) Extensive skeletal muscle cell mitochondriopathy distinguishes critical limb ischemia patients from claudicants. JCI Insight 3:
Sullivan, E Madison; Pennington, Edward Ross; Sparagna, Genevieve C et al. (2018) Docosahexaenoic acid lowers cardiac mitochondrial enzyme activity by replacing linoleic acid in the phospholipidome. J Biol Chem 293:466-483
Kloner, Robert A; Brown, David A; Csete, Marie et al. (2017) New and revisited approaches to preserving the reperfused myocardium. Nat Rev Cardiol 14:679-693
Westerhold, Lauren E; Bridges, Lance C; Shaikh, Saame Raza et al. (2017) Kinetic and Thermodynamic Analysis of Acetyl-CoA Activation of Staphylococcus aureus Pyruvate Carboxylase. Biochemistry 56:3492-3506
Kosaraju, Rasagna; Guesdon, William; Crouch, Miranda J et al. (2017) B Cell Activity Is Impaired in Human and Mouse Obesity and Is Responsive to an Essential Fatty Acid upon Murine Influenza Infection. J Immunol 198:4738-4752
Pennington, Edward Ross; Fix, Amy; Sullivan, E Madison et al. (2017) Distinct membrane properties are differentially influenced by cardiolipin content and acyl chain composition in biomimetic membranes. Biochim Biophys Acta Biomembr 1859:257-267

Showing the most recent 10 out of 24 publications