Increased reflex bronchoconstriction is a characteristic of asthma. We have recently shown a doubling of airway epithelial sensory nerves in a mouse model of asthma. This increased reflex bronchoconstriction substantially. Eliminating eosinophils prevented the increases in both innervation and bronchoconstriction. We also showed that eosinophils increase the growth of cultured dorsal root ganglion sensory neurons, due to a soluble factor produced by the eosinophils. Thus eosinophils increase airway sensory innervation, and this may participate in both the bronchoconstriction and the cough that are common in asthma. We hypothesize that eosinophils promote airway sensory nerve growth and this increases reflex bronchoconstriction and cough. We propose three specific aims:
SPECIFIC AIM #1 : To define eosinophil-mediated effects on airway sensory innervation. In both an antigen challenge model and unique transgenic models of eosinophilic pulmonary inflammation, we will use our novel whole-mount nerve imaging [8] to define eosinophil-dependent changes in airway epithelial sensory innervation, as well as on substance P content, and TRPA1, TRPV1, TRPM8, and ASIC3 expression will be measured. These will be correlated with airway reflex bronchoconstriction.
SPECIFIC AIM #2 : To determine the reversibility of these pulmonary remodeling events by targeting eosinophils in mice with established disease. We will use our new strains of mice that allow inducible on demand ablation of eosinophils (the iPHIL mouse). We have also generated mice with eosinophils that lack the glucocorticoid receptor, allowing us to determine whether the effects of steroid treatment are mediated by suppressing eosinophils or via eosinophil independent pathways.
SPECIFIC AIM #3 : To characterize neural plasticity in human airway disease. Similar histological endpoints as in aims 1 and 2 will be measured in biopsies from well-characterized patients with 1) asthma (mild and severe), 2) cough-variant asthma, and 3) cough without asthma, comparing these with normal volunteers. Induced sputum and bronchoalveolar lavage eosinophil peroxidase will be measured as possible biomarkers.

Public Health Relevance

Changes in the way the sensory nerves control the airways are important in asthma. In this project, we will study the ways eosinophils, a kind of white blood cell important in asthma, change the structure and function of airway nerves. This will allow us to develop new treatments based both on eosinophils and nerves.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL124165-03
Application #
9058133
Study Section
Lung Cellular, Molecular, and Immunobiology Study Section (LCMI)
Program Officer
Noel, Patricia
Project Start
2014-09-01
Project End
2018-04-30
Budget Start
2016-05-01
Budget End
2017-04-30
Support Year
3
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Oregon Health and Science University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
096997515
City
Portland
State
OR
Country
United States
Zip Code
97239
Khoury, Paneez; Akuthota, Praveen; Ackerman, Steven J et al. (2018) Revisiting the NIH Taskforce on the Research needs of Eosinophil-Associated Diseases (RE-TREAD). J Leukoc Biol 104:69-83
Drake, Matthew G; Bivins-Smith, Elizabeth R; Proskocil, Becky J et al. (2016) Human and Mouse Eosinophils Have Antiviral Activity against Parainfluenza Virus. Am J Respir Cell Mol Biol 55:387-94
Wang, Zeneng; DiDonato, Joseph A; Buffa, Jennifer et al. (2016) Eosinophil Peroxidase Catalyzed Protein Carbamylation Participates in Asthma. J Biol Chem 291:22118-22135
Proskocil, Becky J; Bruun, Donald A; Garg, Jasmine A et al. (2015) The influence of sensitization on mechanisms of organophosphorus pesticide-induced airway hyperreactivity. Am J Respir Cell Mol Biol 53:738-47
Jacobsen, E A; Doyle, A D; Colbert, D C et al. (2015) Differential activation of airway eosinophils induces IL-13-mediated allergic Th2 pulmonary responses in mice. Allergy 70:1148-59