Hemoglobin (Hb)-based oxygen (O2) carriers (HBOCs) are currently being developed as red blood cell (RBC) substitutes for use in transfusion medicine. Despite significant commercial development, recent late stage clinical results of polymerized hemoglobin (PolyHb) solutions (i.e. Hemopure? (OPK Biotech, Cambridge, MA), a glutaraldehyde polymerized bovine Hb; and PolyHeme? (Northfield Laboratories Inc., Evanston, IL), a glutaraldehyde polymerized pyridoxylated human Hb) hamper further development. Both of these commercial products elicit vasoconstriction at the microcirculatory level, and lead to the development of systemic hypertension and oxidative tissue damage. These side-effects are hypothesized to occur either by a nitric oxide (NO) scavenging or oxygen (O2) oversupply mechanism and are both exacerbated by PolyHb extravasation into the tissue space. In light of these 2 potential mechanisms, it is apparent that PolyHb size will have a profound impact on the extent of vasoconstriction, systemic hypertension and oxidative tissue toxicity. Therefore in this application, we hypothesize that PolyHb size will regulate vasoconstriction at the microcirculatory level, systemic hypertension and tissue oxidative damage. In order to test this hypothesis, we plan to synthesize several PolyHbs of varying size in the low O2 affinity state by cross-linking/polymerizing bovine Hb using the cross-linking agent glutaraldehyde. In order to test the central hypothesis of this application, we propose 3 specific aims:
Specific Aim 1 : Analyze the role of endothelial function on the development of oxidative tissue injury to PolyHbs of varying size.
Specific Aim 2 : Analyze cardiac function in the presence of PolyHbs of varying size.
Specific Aim 3 : Evaluate the ability of PolyHb to restore perfusion and oxygenation after resuscitation from hemorrhagic shock. The proposed work is both significant and innovative, since it seeks to develop safe and efficacious PolyHbs for use in transfusion medicine. In addition, state-of-the-art biophysical techniques and two unique animal models will be used to understand PolyHb physiological responses and determine the clinical potential of these novel materials.

Public Health Relevance

The U.S. blood supply is at risk due to the presence of emerging infectious diseases. In order to preserve the blood supply and protect the population, this application seeks to develop novel oxygen carrying solutions consisting of polymerized hemoglobins that are safe and efficacious by screening these materials using an animal model with similar antioxidant status to humans.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
3R01HL126945-01A1S1
Application #
9433761
Study Section
Program Officer
Ochocinska, Margaret J
Project Start
2017-07-17
Project End
2020-06-30
Budget Start
2017-07-17
Budget End
2017-08-31
Support Year
1
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Ohio State University
Department
Engineering (All Types)
Type
Biomed Engr/Col Engr/Engr Sta
DUNS #
832127323
City
Columbus
State
OH
Country
United States
Zip Code
43210
Wallace, Martina; Green, Courtney R; Roberts, Lindsay S et al. (2018) Enzyme promiscuity drives branched-chain fatty acid synthesis in adipose tissues. Nat Chem Biol 14:1021-1031
Pires, Ivan S; Belcher, Donald A; Palmer, Andre F (2017) Quantification of Active Apohemoglobin Heme-Binding Sites via Dicyanohemin Incorporation. Biochemistry 56:5245-5259
Martucci, Alexandre Fabricio; Abreu Martucci, Ana Carolina Carvalho Ferreira; Cabrales, Pedro et al. (2017) Acute kidney function and morphology following topload administration of recombinant hemoglobin solution. Artif Cells Nanomed Biotechnol 45:24-30
Ao-Ieong, Eilleen S Y; Williams, Alexander; Jani, Vivek et al. (2017) Cardiac function during resuscitation from hemorrhagic shock with polymerized bovine hemoglobin-based oxygen therapeutic. Artif Cells Nanomed Biotechnol 45:686-693
Jani, Vivek P; Jelvani, Alborz; Moges, Selamawit et al. (2017) Polyethylene Glycol Camouflaged Earthworm Hemoglobin. PLoS One 12:e0170041
Belcher, Donald Andrew; Banerjee, Uddyalok; Baehr, Christopher Michael et al. (2017) Mixtures of tense and relaxed state polymerized human hemoglobin regulate oxygen affinity and tissue construct oxygenation. PLoS One 12:e0185988
Jani, Vivek P; Mailo, Shawn; Athar, Ali et al. (2017) Blood Quality Diagnostic Device Detects Storage Differences Between Donors. IEEE Trans Biomed Circuits Syst 11:1400-1405
Damestani, Yasaman; Galan-Hoffman, Diego E; Ortiz, Daniel et al. (2016) Inflammatory response to implantation of transparent nanocrystalline yttria-stabilized zirconia using a dorsal window chamber model. Nanomedicine 12:1757-1763
Anandan, P; Ortiz, D; Intaglietta, M et al. (2015) Red blood cells flows in rectilinear microfluidic chip. Conf Proc IEEE Eng Med Biol Soc 2015:3225-8
Reid, Tony; Oronsky, Bryan; Scicinski, Jan et al. (2015) Safety and activity of RRx-001 in patients with advanced cancer: a first-in-human, open-label, dose-escalation phase 1 study. Lancet Oncol 16:1133-1142