Two-stage miRNA delivering scaffolds for patient-originated cells to regenerate blood vessels There are about 1.4 million arterial bypass operations annually in the US, but many patients who require arterial bypass procedures do not have suitable vessels for use. Although synthetic materials are frequently used to treat vascular disease, their failure rate, especially in replacing small-diameter vessels, remains high. Induced pluripotent stem cells (iPSCs) have enormous potential for the repair of diseased or traumatized blood vessels. Indeed, we, among the first, have successfully induced iPSC differentiation to smooth muscle cells (SMCs) in culture and on biomimetic 3D scaffolds. However, it takes more than 2 months to generate patient- specific iPSCs and iPSC-derived SMCs and there is potential for oncogenesis. Provocatively, we have established a direct differentiation protocol for SMCs from patient fibroblasts using three determined factors. Also, we found that microRNA-10a (miR-10a) plays an important role in SMC differentiation and helps SMCs maintain the differentiated contractile phenotype. For SMC direct differentiation and future clinical application, an efficient non-viral vector is highly desired. Fortunately, we recently developed a novel hyperbranched polymer vector and a two-stage delivery system to highly efficiently deliver microRNAs and plasmids into cells in a temporally controlled manner. Our long-term goal is to regenerate functional human blood vessels using patient-originated fibroblasts. The key to functional blood vessel regeneration using fibroblasts is the in situ direct differentiation and maintenance of the contractile phenotype of the vascular SMCs. In this proposal, we hypothesize that sustained and highly efficient miRNA/plasmid delivery into fibroblasts and SMCs on a 3D nanofibrous scaffold will regenerate a contractile SMC-laden functional vascular graft.
The specific aims of this project are: 1) Determine the mechanistic roles of miR-10a, HDAC4 and associated signaling pathways in fibroblast/SMC transdifferentiation; 2) Develop anatomically-designed nanofibrous scaffolds using a reverse 3D printing technology and immobilize sustained two-stage miRNA/plasmid delivery system on the scaffolds; 3) Evaluate engineered vascular scaffold in vitro and in vivo. By accomplishing these specific aims, we will improve mechanistic understandings of fibroblast/SMC transdifferentiation how to maintain the SMC contractile phenotype in the vascular scaffold and develop key miRNA/DNA delivery and 3D tissue engineering technologies to advance the therapeutic utility of patient-originated cells for human vascular regeneration.

Public Health Relevance

Two-stage miRNA delivering scaffolds for patient-originated cells to regenerate blood vessels While cardiovascular disease (CVD) is the most common cause of death in the United States, there are significant limitations of the current practice of replacing/repairing defective and diseased vascular tissues because of limited availability of suitable vessels from the patients and serious drawbacks of synthetic grafts. Fortunately, we have established a protocol to produce smooth muscle cells directly from easily available patient cells, fibroblasts. In this project, we will investigate the underlying mechanisms of such cell differentiation and develop technologies for such cells to regenerate the clinically need patient-specific living blood vessel grafts.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
1R01HL136231-01
Application #
9264317
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Lundberg, Martha
Project Start
2016-12-20
Project End
2020-11-30
Budget Start
2016-12-20
Budget End
2017-11-30
Support Year
1
Fiscal Year
2017
Total Cost
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Dentistry
Type
Schools of Dentistry/Oral Hygn
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Liu, Qihai; Wang, Jun; Chen, Yupeng et al. (2018) Suppressing mesenchymal stem cell hypertrophy and endochondral ossification in 3D cartilage regeneration with nanofibrous poly(l-lactic acid) scaffold and matrilin-3. Acta Biomater 76:29-38
Gupte, Melanie J; Swanson, W Benton; Hu, Jiang et al. (2018) Pore size directs bone marrow stromal cell fate and tissue regeneration in nanofibrous macroporous scaffolds by mediating vascularization. Acta Biomater 82:1-11
Guo, Baolin; Ma, Peter X (2018) Conducting Polymers for Tissue Engineering. Biomacromolecules 19:1764-1782
Liu, Zhongning; Chen, Xin; Zhang, Zhanpeng et al. (2018) Nanofibrous Spongy Microspheres To Distinctly Release miRNA and Growth Factors To Enrich Regulatory T Cells and Rescue Periodontal Bone Loss. ACS Nano 12:9785-9799
Dang, Ming; Saunders, Laura; Niu, Xufeng et al. (2018) Biomimetic delivery of signals for bone tissue engineering. Bone Res 6:25
Hirai, Hiroyuki; Yang, Bo; Garcia-Barrio, Minerva T et al. (2018) Direct Reprogramming of Fibroblasts Into Smooth Muscle-Like Cells With Defined Transcription Factors-Brief Report. Arterioscler Thromb Vasc Biol 38:2191-2197
Zhao, Xin; Guo, Baolin; Wu, Hao et al. (2018) Injectable antibacterial conductive nanocomposite cryogels with rapid shape recovery for noncompressible hemorrhage and wound healing. Nat Commun 9:2784
Hei, Mingyang; Wang, Jun; Wang, Kelly et al. (2017) Dually responsive mesoporous silica nanoparticles regulated by upper critical solution temperature polymers for intracellular drug delivery. J Mater Chem B 5:9497-9501