Innovative Methods for Modeling Longitudinal Medical Costs It is projected that health care costs per person would increase from $8,160 in 2009 to $13,100 in 2018, and that total health care costs will account for over 20% of the gross domestic product by 2018. Statistical analysis of medical cost data is becoming increasingly important with the heightened interests in containing the rising health care cost. Medical cost data are routinely collected in billing records of hospitals and claims of health insurance plans (e.g., Medicare, Medicaid, or commercial insurance). The wide availability of such data has motivated the development and application of the state-of-the-art statistical and econometric methods. With technological advances in automated data collection and management, medical costs are now often gathered at regular time intervals (e.g., daily or monthly), creating a longitudinal data pattern. The objective of this study is to develop and disseminate a number of models to analyze longitudinal medical costs data. There are five aims in this grant. First, we will expand the currently available econometric models of medical costs to longitudinal data and compare the performance of these models. Second, we will explore the use of more flexible functional forms of covariate specification in modeling longitudinal medical cost data. Third, we will extend the above models to jointly analyze medical costs and multiple health outcomes (e.g., survival, or quality of life), and study the effect of risk factors on them simultaneously. Fourth, we will apply hierarchical models to address the clustering effect in modeling longitudinal medical cost at different levels, e.g., health plans, families, and members. Finally, we will develop ready-to-use software to facilitate the practical application of methods developed from the proposed study. In addition to testing the performance of the proposed methods in simulation studies, these innovative methods will be applied to empirical case studies using three real-world databases: Clinical Data Repository (CDR) at the University of Virginia (UVA) Health System, Medical Expenditure Panel Survey (MEPS), and the SEER- Medicare databases. We expect the application of the proposed methods to these case studies will substantially advance our understanding of the influence of demographics, physician practice patterns, diseases, and health policies on the cost of medical care.

Public Health Relevance

Rising health care cost is a major concern for health policy makers. To better understand the factors associated with the growth in medical cost, it is important to study the longitudinal history of medical cost data. We propose to develop better methods to analyze longitudinal medical care costs data. To demonstrate the advantages of our proposed methods in clinical or policy decision making, we will apply these methods to a number of clinical- or policy-relevant case studies. We will also make programming codes of these methods available to other researchers who are interested in medical cost studies.

Agency
National Institute of Health (NIH)
Institute
Agency for Healthcare Research and Quality (AHRQ)
Type
Research Project (R01)
Project #
1R01HS020263-01
Application #
8088732
Study Section
Health Systems Research (HSR)
Program Officer
Henderson, Melford
Project Start
2011-09-30
Project End
2012-08-31
Budget Start
2011-09-30
Budget End
2012-08-31
Support Year
1
Fiscal Year
2011
Total Cost
Indirect Cost
Name
University of Virginia
Department
Public Health & Prev Medicine
Type
Schools of Medicine
DUNS #
065391526
City
Charlottesville
State
VA
Country
United States
Zip Code
22904
Su, Xiaogang; Peña, Annette T; Liu, Lei et al. (2018) Random forests of interaction trees for estimating individualized treatment effects in randomized trials. Stat Med 37:2547-2560
Joyce, Brian T; Zheng, Yinan; Zhang, Zhou et al. (2018) miRNA-Processing Gene Methylation and Cancer Risk. Cancer Epidemiol Biomarkers Prev 27:550-557
Shen, Chan; Zhao, Bo; Liu, Lei et al. (2018) Adherence to tyrosine kinase inhibitors among Medicare Part D beneficiaries with chronic myeloid leukemia. Cancer 124:364-373
Shih, Ya-Chen Tina; Shen, Chan; Hu, Jim C (2017) Do Robotic Surgical Systems Improve Profit Margins? A Cross-Sectional Analysis of California Hospitals. Value Health 20:1221-1225
Allen, Norrina B; Zhao, Lihui; Liu, Lei et al. (2017) Favorable Cardiovascular Health, Compression of Morbidity, and Healthcare Costs: Forty-Year Follow-Up of the CHA Study (Chicago Heart Association Detection Project in Industry). Circulation 135:1693-1701
Shih, Ya-Chen Tina; Chien, Chun-Ru (2017) A review of cost communication in oncology: Patient attitude, provider acceptance, and outcome assessment. Cancer 123:928-939
Li, Zhigang; Frost, H R; Tosteson, Tor D et al. (2017) A semiparametric joint model for terminal trend of quality of life and survival in palliative care research. Stat Med 36:4692-4704
Shih, Ya-Chen Tina; Xu, Ying; Liu, Lei et al. (2017) Rising Prices of Targeted Oral Anticancer Medications and Associated Financial Burden on Medicare Beneficiaries. J Clin Oncol 35:2482-2489
Giordano, Sharon H; Niu, Jiangong; Chavez-MacGregor, Mariana et al. (2016) Estimating regimen-specific costs of chemotherapy for breast cancer: Observational cohort study. Cancer 122:3447-3455
Chen, Jinsong; Liu, Lei; Shih, Ya-Chen T et al. (2016) A flexible model for correlated medical costs, with application to medical expenditure panel survey data. Stat Med 35:883-94

Showing the most recent 10 out of 28 publications