Today's generation of multi-modal imaging systems produces massive high dimensional data sets, which when coupled with high throughput genotyping data such as single nucleotide polymorphisms (SNPs), provide exciting opportunities to enhance our understanding of phenotypic characteristics and the genetic architecture of human diseases. However, the unprecedented scale and complexity of these data sets have presented critical computational bottlenecks requiring new concepts and enabling tools. To address these challenges, using the study of Alzheimer's disease (AD) as a test bed, this project will develop and validate novel bioinformatics strategies for multidimensional brain imaging genetics.
Aim 1 is to develop a novel bi- multivariate analysis strategy, S3K-CCA, for studying imaging genetic associations. Existing imaging genetics methods are typically designed to discover single-SNP-single-QT, single-SNP-multi-QT or multi-SNP-single- QT associations, and have limited power in revealing complex relationships between interlinked genetic markers and correlated brain phenotypes. To overcome this limitation, S3K-CCA is designed to be a sparse bi- multivariate learning model that simultaneously uses multiple response variables with multiple predictors for analyzing large-scale multi-modal neurogenomic data.
Aim 2 is to develop HD-BIG, a visualization and systems biology framework for integrative analysis of High-Dimensional Brain Imaging Genetics data. Machine learning strategies to seamlessly incorporate valuable domain knowledge to produce biologically meaningful results is still an under-explored area in imaging genetics. In this aim, we will develop a user-friendly heat map interface to visualize high-dimensional results, adjust learning parameters and strategies, interact with existing bioinformatics resources and tools, and facilitate visual exploratory and systems biology analysis. A novel imaging genetic enrichment analysis (IGEA) method will be developed to identify relevant genetic pathways and associated brain circuits, and to reveal complex relationships among them.
Aim 3 is to evaluate the proposed S3K-CCA and IGEA methods and the HD-BIG framework using both simulated and real imaging genetics data. This project is expected to produce novel bioinformatics algorithms and tools for comprehensive joint analysis of large scale heterogeneous imaging genetics data. The availability of these powerful methods is critical to the success of many imaging genetics initiatives. In addition, they can also help enable new computational applications in other areas of biomedical research where systematic and integrative analysis of large-scale multi-modal data is critical. Using AD as an exemplar, the proposed methods will demonstrate the potential for enhancing mechanistic understanding of complex disorders, which can benefit public health outcomes by facilitating diagnostic and therapeutic progress.

Public Health Relevance

) Recent advances in multi-modal imaging and high throughput genotyping techniques provide exciting opportunities to enhance our understanding of phenotypic characteristics and underlying genetic mechanisms associated with human diseases. This proposal seeks to develop new bi-multivariate machine learning models and novel enrichment analysis methods, coupled with a visualization and systems biology framework, for integrative analysis of high-dimensional brain imaging genetics data. The methods and tools are developed and evaluated in an imaging genetic study of Alzheimer's disease, and can also be applied to many other disorders to improve public health outcomes by facilitating diagnostic and therapeutic progress.

Agency
National Institute of Health (NIH)
Institute
National Library of Medicine (NLM)
Type
Research Project (R01)
Project #
5R01LM011360-02
Application #
8538499
Study Section
Special Emphasis Panel (ZLM1-ZH-C (01))
Program Officer
Ye, Jane
Project Start
2012-09-01
Project End
2016-08-31
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
2
Fiscal Year
2013
Total Cost
$313,357
Indirect Cost
$78,439
Name
Indiana University-Purdue University at Indianapolis
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
603007902
City
Indianapolis
State
IN
Country
United States
Zip Code
46202
Zigon, Bob; Li, Huang; Yao, Xiaohui et al. (2018) GPU Accelerated Browser for Neuroimaging Genomics. Neuroinformatics 16:393-402
Kinnunen, Kirsi M; Cash, David M; Poole, Teresa et al. (2018) Presymptomatic atrophy in autosomal dominant Alzheimer's disease: A serial magnetic resonance imaging study. Alzheimers Dement 14:43-53
Urbanowicz, Ryan J; Olson, Randal S; Schmitt, Peter et al. (2018) Benchmarking relief-based feature selection methods for bioinformatics data mining. J Biomed Inform 85:168-188
Cong, Shan; Risacher, Shannon L; West, John D et al. (2018) Volumetric comparison of hippocampal subfields extracted from 4-minute accelerated vs. 8-minute high-resolution T2-weighted 3T MRI scans. Brain Imaging Behav 12:1583-1595
Miller, Jason E; Shivakumar, Manu K; Risacher, Shannon L et al. (2018) Codon bias among synonymous rare variants is associated with Alzheimer's disease imaging biomarker. Pac Symp Biocomput 23:365-376
Wang, Xiaoqian; Chen, Hong; Yan, Jingwen et al. (2018) Quantitative trait loci identification for brain endophenotypes via new additive model with random networks. Bioinformatics 34:i866-i874
Urbanowicz, Ryan J; Meeker, Melissa; La Cava, William et al. (2018) Relief-based feature selection: Introduction and review. J Biomed Inform 85:189-203
Ridge, Perry G; Wadsworth, Mark E; Miller, Justin B et al. (2018) Assembly of 809 whole mitochondrial genomes with clinical, imaging, and fluid biomarker phenotyping. Alzheimers Dement 14:514-519
Yan, Jingwen; Risacher, Shannon L; Shen, Li et al. (2018) Network approaches to systems biology analysis of complex disease: integrative methods for multi-omics data. Brief Bioinform 19:1370-1381
Lee, Younghee; Han, Seonggyun; Kim, Dongwook et al. (2018) Genetic variation affecting exon skipping contributes to brain structural atrophy in Alzheimer's disease. AMIA Jt Summits Transl Sci Proc 2017:124-131

Showing the most recent 10 out of 113 publications