In mammals, the suprachiasmatic nuclei (SCN) of the hypothalamus function as the major biological clock. Recent work has revealed that a program of rhythmic transcriptional regulation is required for endogenous SCN timekeeping and that light-induced changes in circadian timing result from alterations in this transcriptional program. Given this central role of inducible gene expression, a characterization of the intracellular signaling pathways and downstream transcription factors involved in biological timing and entrainment is critical for understanding the functional properties of the circadian clock. In our prior round of funding we collected a wealth of data supporting the hypothesis that the MARK pathway couples photic input to the clock timing process. What is lacking is an understanding of the precise routes by which the MARK pathway regulates the clock. We hypothesize that the MARK signaling cascade regulates timing at both a transcriptional and translational level, and we have assembled an array of novel tools to test this hypothesis.
In Aim 1 we will determine whether the MARK pathway-regulated kinases MSK1/2 and RSK2 function as cellular signaling intermediates that couple light to clock entrainment. Our published reports reveal that both kinases are activated by light in the SCN, and preliminary data indicate that MSK1 and RSK2 regulate clock entrainment. Behavioral studies will be complimented by studies that examine chromatin structure and gene expression in MSK and RSK null mice.
In Aim 2 we investigate the role of the CREB/CRE- transcription pathway (a target of the MARK pathway) in clock entrainment and clock rhythm amplitude. The CREB/CRE pathway has been implicated as a principal route by which entrainment cues impinge upon the core transcriptional timing process. However, there has yet to be an effective set of tools to test this idea in vivo. To this end, we have developed a novel set of CREB repressor and CREB activator transgenic mice that will be used to examine this question at a behavioral, biochemical and genetic level.
In Aim 3, we investigate the role of the MARK pathway as a regulator of light- and clock- dependent mRNA translation in the SCN. Given recent work implicating dysregulation of circadian timing/entrainment in disorders such as obesity, cardiovascular disease and cancer, there is a clear need to identify the intracellular signaling events that play a fundamental role in pacemaker entrainment.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Project (R01)
Project #
7R01MH062335-09
Application #
7922074
Study Section
Biological Rhythms and Sleep Study Section (BRS)
Program Officer
Beckel-Mitchener, Andrea C
Project Start
2000-12-01
Project End
2012-06-30
Budget Start
2010-07-01
Budget End
2011-06-30
Support Year
9
Fiscal Year
2010
Total Cost
$318,750
Indirect Cost
Name
Ohio State University
Department
Neurosciences
Type
Schools of Medicine
DUNS #
832127323
City
Columbus
State
OH
Country
United States
Zip Code
43210
Karelina, Kate; Alzate-Correa, Diego; Obrietan, Karl (2014) Ribosomal S6 kinase regulates ischemia-induced progenitor cell proliferation in the adult mouse hippocampus. Exp Neurol 253:72-81
Hansen, Katelin F; Karelina, Kate; Sakamoto, Kensuke et al. (2013) miRNA-132: a dynamic regulator of cognitive capacity. Brain Struct Funct 218:817-31
Sakamoto, Kensuke; Norona, Frances E; Alzate-Correa, Diego et al. (2013) Clock and light regulation of the CREB coactivator CRTC1 in the suprachiasmatic circadian clock. J Neurosci 33:9021-7
Cao, Ruifeng; Butcher, Greg Q; Karelina, Kate et al. (2013) Mitogen- and stress-activated protein kinase 1 modulates photic entrainment of the suprachiasmatic circadian clock. Eur J Neurosci 37:130-40
Choi, Yun-Sik; Karelina, Kate; Alzate-Correa, Diego et al. (2012) Mitogen- and stress-activated kinases regulate progenitor cell proliferation and neuron development in the adult dentate gyrus. J Neurochem 123:676-88
Antoun, Ghadi; Bouchard-Cannon, Pascale; Cannon, Pascale Bouchard et al. (2012) Regulation of MAPK/ERK signaling and photic entrainment of the suprachiasmatic nucleus circadian clock by Raf kinase inhibitor protein. J Neurosci 32:4867-77
Karelina, Kate; Hansen, Katelin F; Choi, Yun-Sik et al. (2012) MSK1 regulates environmental enrichment-induced hippocampal plasticity and cognitive enhancement. Learn Mem 19:550-60
Cao, R; Anderson, F E; Jung, Y-J et al. (2011) Circadian regulation of mammalian target of rapamycin signaling in the mouse suprachiasmatic nucleus. Neuroscience 181:79-88
Sakamoto, Kensuke; Karelina, Kate; Obrietan, Karl (2011) CREB: a multifaceted regulator of neuronal plasticity and protection. J Neurochem 116:1-9
Hansen, Katelin F; Sakamoto, Kensuke; Wayman, Gary A et al. (2010) Transgenic miR132 alters neuronal spine density and impairs novel object recognition memory. PLoS One 5:e15497

Showing the most recent 10 out of 31 publications