Deficits in cognitive functions subserved by the dorsolateral prefrontal cortex (DLPFC) are among the most devastating consequences of schizophrenia. Alterations in the intrinsic circuitry of the DLPFC, including inhibitory interneurons, appear to contribute to the observed deficits. Recent post-mortem studies have demonstrated a consistent reduction in GABAergic markers in subjects with schizophrenia, which may be most prominent in the parvalbumin-containing subset of interneurons (PV interneurons). However, how alterations in these inhibitory neurons may be related to the cognitive deficits present in schizophrenia requires an understanding of the normal, fundamental mechanisms that govern the operation of inhibitory circuits in the primate DLPFC. In order to address this question, this proposal begins with an anatomophysiological identification of inhibitory neurons, and follows with studies designed to test the hypothesis that PV interneurons, provide tight temporal coupling of pyramidal cells' outputs to their inputs, suggesting their critical role in retaining information selectivity (given that it is coded in spike timing) during cortical information processing. Thus, alterations in these GABA neurons are proposed to have detrimental effects on the temporal fidelity and selectivity of pyramidal cells outputs, resulting in loss of their specific tuning in DLPFC. We suggest that this mechanism contributes to the pathophysiological basis for the cognitive deficits in thought processing and working memory observed in schizophrenia. The power of the proposed studies to test these hypotheses derives from several factors. First, the studies are conducted in young adult macaque monkeys, whose highly developed DLPFC makes this species unexcelled for research into the structure-function relationships underlying human mental illnesses. Second, the approach utilizes a living slice preparation, the ideal means to study functional intrinsic circuitry at the cellular and synaptic levels of resolution required to rigorously test our hypotheses. Third, the studies will be conducted using a newly developed experimental set-up that allows simultaneous patch clamp electrophysiological recordings from up to 8 neurons, providing a high yield of connected cell pairs, triplets and quadruplets. Finally, all physiological observations will also be combined with morphological reconstructions of identified neuronal circuits, allowing correlations between structure and function.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Project (R01)
Project #
5R01MH067963-04
Application #
7030234
Study Section
Integrative, Functional and Cognitive Neuroscience 8 (IFCN)
Program Officer
Glanzman, Dennis L
Project Start
2003-03-01
Project End
2008-02-29
Budget Start
2006-03-01
Budget End
2007-02-28
Support Year
4
Fiscal Year
2006
Total Cost
$273,302
Indirect Cost
Name
University of Pittsburgh
Department
Psychiatry
Type
Schools of Medicine
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Zaitsev, Aleksey V; Povysheva, Nadezhda V; Gonzalez-Burgos, Guillermo et al. (2009) Interneuron diversity in layers 2-3 of monkey prefrontal cortex. Cereb Cortex 19:1597-615
Povysheva, N V; Zaitsev, A V; Rotaru, D C et al. (2008) Parvalbumin-positive basket interneurons in monkey and rat prefrontal cortex. J Neurophysiol 100:2348-60
Povysheva, N V; Zaitsev, A V; Kroner, S et al. (2007) Electrophysiological differences between neurogliaform cells from monkey and rat prefrontal cortex. J Neurophysiol 97:1030-9
Zaitsev, A V; Povysheva, N V; Lewis, D A et al. (2007) P/Q-type, but not N-type, calcium channels mediate GABA release from fast-spiking interneurons to pyramidal cells in rat prefrontal cortex. J Neurophysiol 97:3567-73
Povysheva, N V; Gonzalez-Burgos, G; Zaitsev, A V et al. (2006) Properties of excitatory synaptic responses in fast-spiking interneurons and pyramidal cells from monkey and rat prefrontal cortex. Cereb Cortex 16:541-52
Krimer, Leonid S; Zaitsev, Aleksey V; Czanner, Gabriela et al. (2005) Cluster analysis-based physiological classification and morphological properties of inhibitory neurons in layers 2-3 of monkey dorsolateral prefrontal cortex. J Neurophysiol 94:3009-22
Zaitsev, A V; Gonzalez-Burgos, G; Povysheva, N V et al. (2005) Localization of calcium-binding proteins in physiologically and morphologically characterized interneurons of monkey dorsolateral prefrontal cortex. Cereb Cortex 15:1178-86