The long-term goal of this research is to study the dynamics of neurotransmitter signaling in the central nervous system of Drosophila melanogaster, the fruit fly. The specific goal of this project is to develop a microelectrode method to measure the real-time release and clearance of serotonin in an intact fruit fly nervous system. The fruit fly is a popular model system for biologists because of the ease of making genetic mutations and its homology with higher order organisms, including similar neurotransmitter systems. The small size of the fly central nervous system (8 nL) has precluded real-time studies of neurotransmitter release and uptake. This study has implications for human health because serotonin is an important neurotransmitter whose signaling is implicated in mental illnesses, including depression and drug abuse. However, the mechanisms for regulation of serotonin concentrations are not well understood.
The specific aims are: 1. To characterize real-time, endogenous serotonin release and uptake in individual Drosophila larva. Genetically modified flies with a blue-light sensitive channel will be used to specifically elicit serotonin release. This technique will be used to test hypotheses about the effects of cocaine administration on serotonin transporter activity and the effects of genetic manipulations on neurotransmitter release. 2. To compare the regulation of serotonergic and dopaminergic signaling in Drosophila. Repeated stimulations will be used to assess the importance of synthesis and recycling in maintaining release. 3. Development of a rapid assay for serotonin transporter activity in Drosophila. Small amounts of serotonin will be pressure ejected into the nerve cord and then detected at the microelectrode. This technique will allow tests of hypotheses about the effect of pharmacological agents or mutations of the serotonin transporter on serotonin signaling. These experiments will result in assays for the fly that will be valuable for screening genetic factors that regulate neurotransmitter levels, resulting in a better fundamental understanding of the time course of neurotransmission.

Public Health Relevance

This research will lead to a better understanding of the basic neurobiology of serotonin, an important modulatory neurotransmitter. We will study how drugs and genetic mutations affect serotonin signaling in the fruit fly nervous system. These studies are important because many psychiatric disorders, including depression and obsessive compulsive disorder, are treated by drugs that target the serotonergic system, but the mechanism of action of these drugs is not well understood.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Project (R01)
Project #
5R01MH085159-05
Application #
8445349
Study Section
Enabling Bioanalytical and Biophysical Technologies Study Section (EBT)
Program Officer
Nadler, Laurie S
Project Start
2009-07-15
Project End
2014-03-31
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
5
Fiscal Year
2013
Total Cost
$357,897
Indirect Cost
$120,297
Name
University of Virginia
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
065391526
City
Charlottesville
State
VA
Country
United States
Zip Code
22904
Shin, Mimi; Copeland, Jeffrey M; Venton, B Jill (2018) Drosophila as a Model System for Neurotransmitter Measurements. ACS Chem Neurosci 9:1872-1883
Pyakurel, Poojan; Shin, Mimi; Venton, B Jill (2018) Nicotinic acetylcholine receptor (nAChR) mediated dopamine release in larval Drosophila melanogaster. Neurochem Int 114:33-41
Shin, Mimi; Venton, B Jill (2018) Electrochemical Measurements of Acetylcholine-Stimulated Dopamine Release in Adult Drosophila melanogaster Brains. Anal Chem 90:10318-10325
Yang, Cheng; Wang, Ying; Jacobs, Christopher B et al. (2017) O2 Plasma Etching and Antistatic Gun Surface Modifications for CNT Yarn Microelectrode Improve Sensitivity and Antifouling Properties. Anal Chem 89:5605-5611
Ganesana, Mallikarjunarao; Lee, Scott T; Wang, Ying et al. (2017) Analytical Techniques in Neuroscience: Recent Advances in Imaging, Separation, and Electrochemical Methods. Anal Chem 89:314-341
Pyakurel, Poojan; Privman Champaloux, Eve; Venton, B Jill (2016) Fast-Scan Cyclic Voltammetry (FSCV) Detection of Endogenous Octopamine in Drosophila melanogaster Ventral Nerve Cord. ACS Chem Neurosci 7:1112-9
Denno, Madelaine E; Privman, Eve; Borman, Ryan P et al. (2016) Quantification of Histamine and Carcinine in Drosophila melanogaster Tissues. ACS Chem Neurosci 7:407-14
Privman, Eve; Venton, B Jill (2015) Comparison of dopamine kinetics in the larval Drosophila ventral nerve cord and protocerebrum with improved optogenetic stimulation. J Neurochem 135:695-704
Rees, Hillary R; Anderson, Sean E; Privman, Eve et al. (2015) Carbon nanopipette electrodes for dopamine detection in Drosophila. Anal Chem 87:3849-55
Zestos, Alexander G; Yang, Cheng; Jacobs, Christopher B et al. (2015) Carbon nanospikes grown on metal wires as microelectrode sensors for dopamine. Analyst 140:7283-92

Showing the most recent 10 out of 23 publications