Gene expression is a fundamental function of any cell. It is the main mechanism by which information is transmitted from the nucleus to the rest of the cell and eventually to other cells and the body of the organism. Genetic variation in components of the transcriptional machinery and signals that regulate gene function generates variation in transcriptional response and consequently variation in phenotypes. It has become apparent that many of the common genetic signals associated with disease are found away from the DNA sequence that encodes for protein sequence and is likely to be functioning in regulating gene expression. In this project we propose to develop methodologies that will explore the consequences of genetic variation in gene expression. There are three main goals of this project. First we will explore and develop methodologies to mine information from experiments that perform deep sequencing of the human transcriptome. The new sequencing technologies are providing us with unprecedented resolution into the transcriptome but are also raising challenges in the computational and biological models to use to interpret such large amounts of data. Secondly, we will use high-resolution genetic data to develop and use methodologies to dissect the fine structure of genetic variants that affect regulation of gene expression. Finally, we will implement and test models to infer the higher-order interactions of genome function so as to dig deeply into the biological consequences of genetic variants and how the signal is transmitted from the DNA sequence to higher levels of cell and body function. Our goals is to develop methodologies that will significantly improve our insight to the variability in human populations and assist in interpreting predisposition to genetic diseases.

Public Health Relevance

Project narrative The proposed project aims at the development of statistical methods for the interpretation and study of the impact of genetic variants in cell function. Understanding the cellular effects of genetic variants provides a fundamental framework for the deep understanding of human genetic disease and increases the potential for the development of relevant treatments and drugs. It is the understanding of the basic molecular functions in health and disease that will provide the utmost resolution of information for the improvement of human health.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Project (R01)
Project #
3R01MH090941-02S1
Application #
8509240
Study Section
Special Emphasis Panel (ZRG1-GGG-A (52))
Program Officer
Addington, Anjene M
Project Start
2010-09-17
Project End
2013-07-31
Budget Start
2012-06-01
Budget End
2013-07-31
Support Year
2
Fiscal Year
2012
Total Cost
$215,355
Indirect Cost
$2,855
Name
University of Geneva
Department
Type
DUNS #
481076537
City
Geneva
State
Country
Switzerland
Zip Code
CH-12-11
Zhang, Mingfeng; Lykke-Andersen, Soren; Zhu, Bin et al. (2018) Characterising cis-regulatory variation in the transcriptome of histologically normal and tumour-derived pancreatic tissues. Gut 67:521-533
Agrawal, A; Chou, Y-L; Carey, C E et al. (2018) Genome-wide association study identifies a novel locus for cannabis dependence. Mol Psychiatry 23:1293-1302
Giacopuzzi, Edoardo; Gennarelli, Massimo; Sacco, Chiara et al. (2018) Genome-wide analysis of consistently RNA edited sites in human blood reveals interactions with mRNA processing genes and suggests correlations with cell types and biological variables. BMC Genomics 19:963
Picardi, Ernesto; D'Erchia, Anna Maria; Lo Giudice, Claudio et al. (2017) REDIportal: a comprehensive database of A-to-I RNA editing events in humans. Nucleic Acids Res 45:D750-D757
Liu, C; Bousman, C A; Pantelis, C et al. (2017) Pathway-wide association study identifies five shared pathways associated with schizophrenia in three ancestral distinct populations. Transl Psychiatry 7:e1037
McCoy, Rajiv C; Wakefield, Jon; Akey, Joshua M (2017) Impacts of Neanderthal-Introgressed Sequences on the Landscape of Human Gene Expression. Cell 168:916-927.e12
Tsai, Teresa; Veitinger, Sophie; Peek, Irina et al. (2017) Two olfactory receptors-OR2A4/7 and OR51B5-differentially affect epidermal proliferation and differentiation. Exp Dermatol 26:58-65
Collado-Torres, Leonardo; Nellore, Abhinav; Kammers, Kai et al. (2017) Reproducible RNA-seq analysis using recount2. Nat Biotechnol 35:319-321
Benítez-Buelga, Carlos; Baquero, Juan Miguel; Vaclova, Tereza et al. (2017) Genetic variation in the NEIL2 DNA glycosylase gene is associated with oxidative DNA damage in BRCA2 mutation carriers. Oncotarget 8:114626-114636
Tukiainen, Taru; Villani, Alexandra-Chloé; Yen, Angela et al. (2017) Landscape of X chromosome inactivation across human tissues. Nature 550:244-248

Showing the most recent 10 out of 70 publications