Agoalofbasicmentalhealthresearchistounderstandthemolecular,cellularandcircuitlevelsubstratesthat contributetoneuropsychiatricdisorders.Thegoalofthisprojectistobetterunderstandtheprinciples underlyingcircuitdysfunctionassociatedwithcognitiveandsocialimpairmentscommontothesedisorders.A promisingapproachtobetterunderstandthesesubstratesistoperformin-depthstudiesinanimalmodelswith highconstructandfacevalidities.DenovopathogenicSYNGAP1mutationsleadingtohaploinsufficiency causeonethemostcommongeneticallydefinedandnon-inheritedformsofintellectualdisability(ID)with autismspectrumdisorder(ASD;?termedMRD5;?OMIN#612621).Studiessupportedbythefirstbudgetperiod identifiedSyngap1heterozygousKOmiceasanoutstandinggeneticmodelofASDwithID.Usingthismodel, wediscoveredadevelopmentalsensitiveperiodofSyngap1functionthatpromotestheproperfunctionof corticalnetworks.Theneurobiologicalstudieswepublishedinthelastperiodweresignificantbecausethey identifiedthedevelopmentaltimingofdendriteandspinematurationselectivitywithinforebrainexcitatory neuronsasacriticalsubstratethatshapesbrainfunctionrelevanttocognitiveandsocialdevelopment. Forthiscompetitiverenewal,wewillbuildonourdiscoveriesinthefirstbudgetperiodbystudyingthekey substratesofcircuitdysfunctionintheSyngap1modelbyprobinghowthisgeneregulatescorticalsensory processingrelevanttocognitionandlearning.Thisapproachissignificantbecausesensoryimpairmentsare extremelycommoninASD/IDandtheseimpairmentsinfluencebehavioraladaptations,includinglearning. Syngap1patientsexpresssensoryabnormalitiesrelatedtotouchandpain.However,thecircuitabnormalities thatunderliesensorydysfunctionareunclear.Thus,ourapproachisinnovativebecausestudieswillbe performedinthemousesomatosensorycortex,whichwillenablepowerfulinvivoexperimentsthatarecapable ofdirectlylinkingcellular-andcircuit-levelfunctionalimpairmentstosensory-basedlearningandbehavioral abnormalities.
The firstAim willinvestigatethecellularmechanismsunderlyingimpairedsomatosensorycortex networkfunctioncausedbypathogenicSyngap1mutations,withanemphasisonhownetwork-levelE/I imbalancesemergewithincorticalcircuitsthatdirectlyencodesensoryrepresentations.Researchproposedin thesecondAimwilldeterminethecellularmechanismsthatcontributetosensory-drivenlearningimpairments inSyngap1mice.Theimpactofthesestudiesisthattheyareexpectedtoadvanceourunderstandinghow corticalcircuitdysfunctionleadstobehavioralimpairmentsassociatedwithASD/ID.
ASD and ID reflect dysfunction of developing neural circuits that drive impaired behavior and cognition. The cellular mechanisms that cause circuit dysfunction remain unclear; thus, this project Aims to discover novel circuit-level substrates that may explain the origins of behavioral and cognitive abnormalities associated with these neuropsychiatric disorders. The knowledge gained from these studies is expected to help direct improved therapeutic approaches to treat impaired cognitive and behavioral impairments common to ASD and ID.
Showing the most recent 10 out of 15 publications