Schizophrenia (SCZ) is a devastating disease that affects approximately 1% of the world's population and is characterized by a constellation of symptoms that include hallucinations and delusions (positive symptoms), antisocial behavior and blunted emotions (negative symptoms), deficits in working memory, executive function, and learning and memory (cognitive symptoms). The mechanisms underlying these symptoms remain unknown, mostly due to the lack of valid experimental approaches to model this disease. The 22q11.2-deletion syndrome (22q11DS), also known as velocardiofacialsyndrome or DiGeorge syndrome, is the most common microdeletion syndrome in humans. SCZ arises in approximately 30% of patients with 22q11DS during their adolescence or early adulthood. Mouse models of 22q11DS have been constructed and validated by replicating deficits in working memory, learning and memory, and other symptoms. Using these mutant mice, we and others have identified cellular and molecular mechanisms underlying the cognitive symptoms of 22q11DS. However, self-reported symptoms such as hallucinations cannot be convincingly modeled in mice. In this application, we propose to test the predictions of several recent neuroscience theories and human imaging data that hallucinations result from deficiencies in thalamocortical (TC) pathways that project to the sensory cortices. In our preliminary experiments in brain slices and in vivo, we found that mouse models of 22q11DS have substantial deficits in synaptic transmission and short-term plasticity at TC pathways to the auditory cortex. In this proposal, we will use single-cell electrophysiology, 2-photon imaging, 2-photon glutamate uncaging, optogenetics, and molecular tools to identify the cellular and molecular mechanisms of TC deficiencies in mouse models of 22q11Ds. Using multiple available strains of mutant mice that carry deletions of clusters of genes or individual genes that map within the large 22q11 microdeletion, we will identify the gene(s) whose deletion underlies TC deficits in these mice. We will also perform in vivo 2-photon imaging to observe abnormal spontaneous activity in individual neurons of the auditory cortex. Abnormal neuronal activity in the auditory cortex has been reported in patients who experience auditory hallucinations, which are most predominant in SCZ. Ultimately, we expect to identify the culprit gene(s) and synaptic targets that cause TC abnormalities and abnormal cortical activity in these mouse models of SCZ. This information will provide a framework for the future development of specific therapeutic interventions to alleviate positive symptoms in patients with this catastrophic disease.

Public Health Relevance

The cause and mechanisms of schizophrenia are mostly unknown. Heterozygous deletions within the 22q11 chromosome cause 22q11.2-deletion syndrome (22q11DS) and substantially increase an individual's risk of schizophrenia. Theoretical works have proposed that thalamocortical pathway deficiencies are the underlying mechanisms of hallucinations, a positive symptom of the disease. In schizophrenia and 22q11DS, positive symptoms are responsive to treatment with antipsychotic drugs. In preliminary studies, we found that mouse models of 22q11DS have deficits in thalamocortical pathways, and these deficits are rescued by antipsychotics. To better understand the mechanisms of 22q11DS and schizophrenia, we will investigate the cause and mechanisms of deficits in thalamocortical pathways in mutant mice that model these catastrophic diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Project (R01)
Project #
4R01MH097742-04
Application #
9087334
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Meinecke, Douglas L
Project Start
2013-07-01
Project End
2018-03-31
Budget Start
2016-04-01
Budget End
2017-03-31
Support Year
4
Fiscal Year
2016
Total Cost
Indirect Cost
Name
St. Jude Children's Research Hospital
Department
Type
DUNS #
067717892
City
Memphis
State
TN
Country
United States
Zip Code
38105
Patton, Mary H; Blundon, Jay A; Zakharenko, Stanislav S (2018) Rejuvenation of plasticity in the brain: opening the critical period. Curr Opin Neurobiol 54:83-89
Devaraju, Prakash; Zakharenko, Stanislav S (2017) Mitochondria in complex psychiatric disorders: Lessons from mouse models of 22q11.2 deletion syndrome: Hemizygous deletion of several mitochondrial genes in the 22q11.2 genomic region can lead to symptoms associated with neuropsychiatric disease. Bioessays 39:
Blundon, Jay A; Roy, Noah C; Teubner, Brett J W et al. (2017) Restoring auditory cortex plasticity in adult mice by restricting thalamic adenosine signaling. Science 356:1352-1356
Devaraju, P; Yu, J; Eddins, D et al. (2017) Haploinsufficiency of the 22q11.2 microdeletion gene Mrpl40 disrupts short-term synaptic plasticity and working memory through dysregulation of mitochondrial calcium. Mol Psychiatry 22:1313-1326
Uchida, Shusaku; Teubner, Brett J W; Hevi, Charles et al. (2017) CRTC1 Nuclear Translocation Following Learning Modulates Memory Strength via Exchange of Chromatin Remodeling Complexes on the Fgf1 Gene. Cell Rep 18:352-366
Eom, Tae-Yeon; Bayazitov, Ildar T; Anderson, Kara et al. (2017) Schizophrenia-Related Microdeletion Impairs Emotional Memory through MicroRNA-Dependent Disruption of Thalamic Inputs to the Amygdala. Cell Rep 19:1532-1544
Chun, Sungkun; Du, Fei; Westmoreland, Joby J et al. (2017) Thalamic miR-338-3p mediates auditory thalamocortical disruption and its late onset in models of 22q11.2 microdeletion. Nat Med 23:39-48
Diouf, Barthelemy; Devaraju, Prakash; Janke, Laura J et al. (2016) Msh2 deficiency leads to dysmyelination of the corpus callosum, impaired locomotion, and altered sensory function in mice. Sci Rep 6:30757
Zheng, Fei; Kasper, Lawryn H; Bedford, David C et al. (2016) Mutation of the CH1 Domain in the Histone Acetyltransferase CREBBP Results in Autism-Relevant Behaviors in Mice. PLoS One 11:e0146366
Gingras, Sebastien; Earls, Laurie R; Howell, Sherie et al. (2015) SCYL2 Protects CA3 Pyramidal Neurons from Excitotoxicity during Functional Maturation of the Mouse Hippocampus. J Neurosci 35:10510-22

Showing the most recent 10 out of 14 publications