In recent years, studies that associate genetic variation with gene expression (eQTL studies) have become a major tool for identifying regulatory genetic variation. However, the difficulty of securing primary tissue samples means that up to now these eQTL studies have been conducted in a limited range of cell and tissue types. Most notably the largest studies have been conducted in EBV-transformed lymphoblastoid cell lines, and it is unclear to what extent eQTLs identified in these cell lines wil be relevant to human disease mapping. The GTEx Project will provide data to remedy this situation, collecting RNA-seq and genotype data on 30 tissues in hundreds of individuals. However, current analytic tools are limited in their ability to fully exploit the richness of these data. In particular, available methods fall short in their ability to jointly analyze data on all tssues to maximize power, while simultaneously allowing for differences among eQTLs present in each tissue. Here we propose to develop novel statistical methods to help address these issues. We will apply these methods to identify eQTLs in the GTEx project data, integrate the GTEx data with other relevant data such as those available from the ENCODE project, and disseminate the results on the internet in a convenient form. We will also provide researchers with convenient tools to cross-reference results of the GTEx project with results of genome-wide association studies. The overall goal of the project is to build and apply an infrastructure for improved eQTL analyses, helping to maximize the utility and accessibility of GTEx data to the broad community of scientists who would like to use these data.

Public Health Relevance

This project will generate and apply statistical tools for analyzing large-scale studies that aim to understand the impact of genetic variation on transcriptomes, and to better understand the different regulatory mechanisms underlying different tissue types, a fundamental issue in biology. Understanding these mechanisms, identifying the regulatory genetic variants, and correlating them with human disease, has the potential help understand the biology of disease, eventually leading to new treatment strategies.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Project (R01)
Project #
5R01MH101825-03
Application #
8878358
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Addington, Anjene M
Project Start
2013-08-01
Project End
2017-06-30
Budget Start
2015-07-01
Budget End
2017-06-30
Support Year
3
Fiscal Year
2015
Total Cost
Indirect Cost
Name
University of Chicago
Department
Biostatistics & Other Math Sci
Type
Schools of Arts and Sciences
DUNS #
005421136
City
Chicago
State
IL
Country
United States
Zip Code
60637
Zhang, Mingfeng; Lykke-Andersen, Soren; Zhu, Bin et al. (2018) Characterising cis-regulatory variation in the transcriptome of histologically normal and tumour-derived pancreatic tissues. Gut 67:521-533
Banovich, Nicholas E; Li, Yang I; Raj, Anil et al. (2018) Impact of regulatory variation across human iPSCs and differentiated cells. Genome Res 28:122-131
Agrawal, A; Chou, Y-L; Carey, C E et al. (2018) Genome-wide association study identifies a novel locus for cannabis dependence. Mol Psychiatry 23:1293-1302
Manning, Alisa (see original citation for additional authors) (2017) A Low-Frequency Inactivating AKT2 Variant Enriched in the Finnish Population Is Associated With Fasting Insulin Levels and Type 2 Diabetes Risk. Diabetes 66:2019-2032
Calabrese, Gina M; Mesner, Larry D; Stains, Joseph P et al. (2017) Integrating GWAS and Co-expression Network Data Identifies Bone Mineral Density Genes SPTBN1 and MARK3 and an Osteoblast Functional Module. Cell Syst 4:46-59.e4
Liu, C; Bousman, C A; Pantelis, C et al. (2017) Pathway-wide association study identifies five shared pathways associated with schizophrenia in three ancestral distinct populations. Transl Psychiatry 7:e1037
McCoy, Rajiv C; Wakefield, Jon; Akey, Joshua M (2017) Impacts of Neanderthal-Introgressed Sequences on the Landscape of Human Gene Expression. Cell 168:916-927.e12
Tsai, Teresa; Veitinger, Sophie; Peek, Irina et al. (2017) Two olfactory receptors-OR2A4/7 and OR51B5-differentially affect epidermal proliferation and differentiation. Exp Dermatol 26:58-65
Collado-Torres, Leonardo; Nellore, Abhinav; Kammers, Kai et al. (2017) Reproducible RNA-seq analysis using recount2. Nat Biotechnol 35:319-321
Benítez-Buelga, Carlos; Baquero, Juan Miguel; Vaclova, Tereza et al. (2017) Genetic variation in the NEIL2 DNA glycosylase gene is associated with oxidative DNA damage in BRCA2 mutation carriers. Oncotarget 8:114626-114636

Showing the most recent 10 out of 42 publications