Neurofilaments (NF) are the major structures of many parts of the nervous system, but are rather poorly understood in functional terms. We plan to further elucidate the function and expression of these proteins by; 1. Producing recombinant fusion proteins containing defined NF sequences and also a panel of highly specific epitope-mapped antibodies to all known NF subunits for use in a host of studies including but not limited to those described in this proposal. 2. To use the novel antibodies to study CNS microanatomy, now concentrating on the detailed distribution and co-distributions of the triplet proteins, alpha-internexin, peripherin and vimentin and the definitive identification and ultrastructural characterization of neurons and fibre tracts containing particular NF protein combinations. These studies will provide novel cell-type specific markers and perhaps suggest relationships between particular NF patterns and particular neuron classes. 3. Search for and characterize NF-associated proteins in detail and try to understand their function, with particular emphasis of proteins that may be involved in NF cross-linking, phosphorylation, transport and interaction with other neuronal constituents. We can now perform these studies much more efficiently thanks to our newly developed computer program, called FINDER, which allows us to identify proteins rapidly and cheaply from their amino acid composition. These studies will throw light on several aspects of NF function. Since NF accumulations and modifications are seen in a variety of damage and disease states, understanding more about NF will undoubtedly have medical impact. Finally, this work is already generating a battery of novel antibodies, constructs and methods which have been and will continue to be made freely available for as yet unimagined studies in future.
Showing the most recent 10 out of 32 publications