Formation of synaptic connections with appropriate postsynaptic targets is essential for proper nervous system function. We propose to examine the role of environmental cues in guiding the growth cones of developing zebrafish, where we can identify individual neurons and watch their development in living embryos. We propose to examine whether target muscles produce permissive signals that promote elongation of the growth cones of all motoneurons or instructive signals that guide the growth cones of specific identified motoneurons as they pioneer cell-specific pathways to cell-specific targets. We will change the relationship between identified motoneurons and their target muscles by transplanting muscle precursors and motoneurons, and observe the subsequent pathway choices made by the growth cones of labeled, identified motoneurons in living embryos. We propose to compare the pathfinding abilities of two populations of motoneurons that develop at different times, to learn whether their growth cones normally extend to target muscles along pathways previously established by the pioneers. We will ablate the pioneers using laser- irradiation to learn whether their presence is required for proper pathfinding by the later-growing motoneurons.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS023915-06
Application #
3407961
Study Section
Neurology B Subcommittee 2 (NEUB)
Project Start
1986-07-01
Project End
1992-06-30
Budget Start
1991-07-01
Budget End
1992-06-30
Support Year
6
Fiscal Year
1991
Total Cost
Indirect Cost
Name
University of Oregon
Department
Type
Schools of Arts and Sciences
DUNS #
948117312
City
Eugene
State
OR
Country
United States
Zip Code
97403
Van Ryswyk, Liesl; Simonson, Levi; Eisen, Judith S (2014) The role of inab in axon morphology of an identified zebrafish motoneuron. PLoS One 9:e88631
Seredick, Steve; Hutchinson, Sarah A; Van Ryswyk, Liesl et al. (2014) Lhx3 and Lhx4 suppress Kolmer-Agduhr interneuron characteristics within zebrafish axial motoneurons. Development 141:3900-9
Seredick, Steve D; Van Ryswyk, Liesl; Hutchinson, Sarah A et al. (2012) Zebrafish Mnx proteins specify one motoneuron subtype and suppress acquisition of interneuron characteristics. Neural Dev 7:35
Tallafuss, Alexandra; Gibson, Dan; Morcos, Paul et al. (2012) Turning gene function ON and OFF using sense and antisense photo-morpholinos in zebrafish. Development 139:1691-9
Honjo, Yasuko; Payne, Laurel; Eisen, Judith S (2011) Somatosensory mechanisms in zebrafish lacking dorsal root ganglia. J Anat 218:271-6
Hale, Laura A; Fowler, Daniel K; Eisen, Judith S (2011) Netrin signaling breaks the equivalence between two identified zebrafish motoneurons revealing a new role of intermediate targets. PLoS One 6:e25841
Krull, Catherine E; Eisen, Judith S (2010) Mechanisms of growth cone repulsion. F1000 Biol Rep 2:6
Tallafuss, Alexandra; Trepman, Alissa; Eisen, Judith S (2009) DeltaA mRNA and protein distribution in the zebrafish nervous system. Dev Dyn 238:3226-36
Eisen, Judith S; Smith, James C (2008) Controlling morpholino experiments: don't stop making antisense. Development 135:1735-43
Honjo, Yasuko; Kniss, Jonathan; Eisen, Judith S (2008) Neuregulin-mediated ErbB3 signaling is required for formation of zebrafish dorsal root ganglion neurons. Development 135:2615-25

Showing the most recent 10 out of 40 publications