The integrative function of the nervous system is predicated on the input-output properties of its individual neural elements. Although there are a number of empirical and analytical models of neuronal input-output behavior, none of them has general predictive value. The goal of the proposed research is to test and refine a computer model of a neuron that is based on the biophysical properties, is computationally tractable, and that accurately recreates neuronal input-output behavior over a wide range of conditions. The proposed work will primarily involve experimental measurement of the effects of synaptic and injected currents on the repetitive discharge of alpha motoneurons from the intact cat spinal cord in combination with computer simulation of the observed behaviors. The research design is based on the hypothesis that the response of a repetitively discharging neuron to synaptic input is determined by three processes: (1) the delivery of synaptic current to the soma (and the subsequent change in somatic membrane potential); (2) the interspike trajectory of somatic membrane potential; and (3) the interspike trajectory of voltage threshold. Project 1 is designed to examine the capacity of injected current transients to advance or delay spikes in repetitively discharging motoneurons in order to quantify variation in the voltage threshold for spike initiation. In Project 2, the effects of injected current transients on spike discharge will be compared to those of postsynaptic potentials from three identified sets of presynaptic neurons. In Project 3, a novel frequency matching paradigm will be used to compare the responses of real and model motoneurons to slowly-varying injected currents. This approach will be extended in Project 4 to an in vitro preparation of rat hypoglossal motoneurons in which long, stable intracellular recordings and more precise control of the extracellular environment are possible. In Project 5, neuromodulatory effects on neuronal input-output behavior will be studied by comparing motoneuron responses to selected inputs in four distinct preparations: intact barbiturate-anesthetized cats; unanesthetized decerebrate cats; decerebrate cats during stimulation of the mesencephalic locomotor region; and decerebrate-spinal cats with i.v. injection of serotonergic and noradrenergic precursors. The results of these studies will improve our understanding of the mechanisms underlying neuronal input-output behavior, and will also aid the interpretation of both human and chronic animal electrophysiological studies in which synaptic events are inferred from changes in motoneuron discharge.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS031925-02
Application #
2269885
Study Section
Neurology B Subcommittee 2 (NEUB)
Project Start
1994-08-01
Project End
1998-05-31
Budget Start
1995-08-01
Budget End
1996-05-31
Support Year
2
Fiscal Year
1995
Total Cost
Indirect Cost
Name
University of Washington
Department
Physiology
Type
Schools of Medicine
DUNS #
135646524
City
Seattle
State
WA
Country
United States
Zip Code
98195
Zeng, Jinsong; Powers, Randall K; Newkirk, Gregory et al. (2005) Contribution of persistent sodium currents to spike-frequency adaptation in rat hypoglossal motoneurons. J Neurophysiol 93:1035-41
Powers, R K; Dai, Y; Bell, B M et al. (2005) Contributions of the input signal and prior activation history to the discharge behaviour of rat motoneurones. J Physiol 562:707-24
Turker, K S; Powers, R K (2005) Black box revisited: a technique for estimating postsynaptic potentials in neurons. Trends Neurosci 28:379-86
Turker, K S; Powers, R K (2003) Estimation of postsynaptic potentials in rat hypoglossal motoneurones: insights for human work. J Physiol 551:419-31
Powers, Randall K; Binder, Marc D (2003) Persistent sodium and calcium currents in rat hypoglossal motoneurons. J Neurophysiol 89:615-24
Binder, Marc D (2002) Integration of synaptic and intrinsic dendritic currents in cat spinal motoneurons. Brain Res Brain Res Rev 40:1-8
Powers, Randall K; Turker, Kemal S; Binder, Marc D (2002) What can be learned about motoneurone properties from studying firing patterns? Adv Exp Med Biol 508:199-205
Turker, K S; Powers, R K (2002) The effects of common input characteristics and discharge rate on synchronization in rat hypoglossal motoneurones. J Physiol 541:245-60
Binder, Marc D; Heckman, C J; Powers, Randall K (2002) Relative strengths and distributions of different sources of synaptic input to the motoneurone pool: implications for motor unit recruitment. Adv Exp Med Biol 508:207-12
Prather, J F; Powers, R K; Cope, T C (2001) Amplification and linear summation of synaptic effects on motoneuron firing rate. J Neurophysiol 85:43-53

Showing the most recent 10 out of 25 publications