Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
1R01NS034699-01
Application #
2273990
Study Section
Neurology B Subcommittee 2 (NEUB)
Project Start
1996-02-15
Project End
1999-01-31
Budget Start
1996-02-15
Budget End
1997-01-31
Support Year
1
Fiscal Year
1996
Total Cost
Indirect Cost
Name
Harvard University
Department
Microbiology/Immun/Virology
Type
Schools of Arts and Sciences
DUNS #
071723621
City
Cambridge
State
MA
Country
United States
Zip Code
02138
Yimlamai, Dean; Konnikova, Liza; Moss, Larry G et al. (2005) The zebrafish down syndrome cell adhesion molecule is involved in cell movement during embryogenesis. Dev Biol 279:44-57
Wong, Eric V; Kerner, Julie A; Jay, Daniel G (2004) Convergent and divergent signaling mechanisms of growth cone collapse by ephrinA5 and slit2. J Neurobiol 59:66-81
Eustace, Brenda K; Jay, Daniel G (2003) Fluorophore-assisted light inactivation for multiplex analysis of protein function in cellular processes. Methods Enzymol 360:649-60
Hauptschein, Robert S; Eustace, Brenda K; Jay, Daniel G (2002) Global high-throughput screens for cellular function. Exp Hematol 30:381-7
Sakurai, Takashi; Wong, Eric; Drescher, Uwe et al. (2002) Ephrin-A5 restricts topographically specific arborization in the chick retinotectal projection in vivo. Proc Natl Acad Sci U S A 99:10795-800
Diefenbach, Thomas J; Latham, Vaughan M; Yimlamai, Dean et al. (2002) Myosin 1c and myosin IIB serve opposing roles in lamellipodial dynamics of the neuronal growth cone. J Cell Biol 158:1207-17
Jay, D G (2001) A Src-astic response to mounting tension. J Cell Biol 155:327-30
Buchstaller, A; Jay, D G (2000) Micro-scale chromophore-assisted laser inactivation of nerve growth cone proteins. Microsc Res Tech 48:97-106
Liu, C W; Lee, G; Jay, D G (1999) Tau is required for neurite outgrowth and growth cone motility of chick sensory neurons. Cell Motil Cytoskeleton 43:232-42
Castelo, L; Jay, D G (1999) Radixin is involved in lamellipodial stability during nerve growth cone motility. Mol Biol Cell 10:1511-20

Showing the most recent 10 out of 11 publications