Alterations in adrenergic transmission occur in anxiety and depressive disorders, and in Alzheimer's disease. In addition, 6 human patients with autonomic failure have been found to be congenitally deficient in the enzyme dopamine (beta-hydroxylase (DBH). They are unable to synthesize the adrenal hormone epinephrine (E) and the adrenergic neurotransmitter norepinephrine (NE). Despite the absence of these transmitters in their brains, these patients have normal mood and mental function. This is surprising given the postulated roles for NE in learning and memory, arousal and attention, and fear and anxiety. Dopamine (DA), the precursor of NE, is stored in and released from the adrenergic terminals of these patients. A hypothesis that could account for normal CNS function in these patients is that their brains develop to utilized DA as the adrenergic transmitter, either by activating dopaminergic or adrenergic receptors. We propose to examine the mouse model (dbh-/-) of human DBH-deficiency to investigate mechanisms that may arise during postnatal development to compensate for the absence of NE. We will determine the number and location of adrenergic cell bodies and terminals in dbh-/- and control mice by several histochemical techniques. We will test for elevated DA receptor expression due to the release of DA in novel locations during development. Because NE is absent, we will also quantitate adrenergic receptor expression. We will characterize the formation of the cerebellum, which has been implicated as being dependent on NE for their proper development. Importantly, any changes we observe in the dbh-/- mice may be due to either the absence of NE or the presence of DA in the adrenergic vesicles. We will create a new mouse model (th-/- /dat-th+/-) to distinguish these etiologies, and to identify any developmental changes due to the loss of NE that are masked by the presence of DA in the dbh-/- mice. Finally we will determine the permanence of phenotypes due to the absence of NE by restoring NE in the mutant mice using amino acid precursors. Results from these studies will determine what are the critical roles of adrenergic signaling in vivo during postnatal neural development, and whether DA can substitute for NE in the CNS.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
3R01NS037722-04S1
Application #
6860531
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Babcock, Debra J
Project Start
1999-07-16
Project End
2004-06-30
Budget Start
2002-07-01
Budget End
2004-06-30
Support Year
4
Fiscal Year
2004
Total Cost
$50,000
Indirect Cost
Name
University of Pennsylvania
Department
Pharmacology
Type
Schools of Medicine
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Jin, S-H; Blendy, J A; Thomas, S A (2005) Cyclic AMP response element-binding protein is required for normal maternal nurturing behavior. Neuroscience 133:647-55
Jin, Sung-Ha; Kim, Hyung J T; Harris, D Christopher et al. (2004) Postnatal development of the cerebellum and the CNS adrenergic system is independent of norepinephrine and epinephrine. J Comp Neurol 477:300-9
Cryan, John F; O'Leary, Olivia F; Jin, Sung-Ha et al. (2004) Norepinephrine-deficient mice lack responses to antidepressant drugs, including selective serotonin reuptake inhibitors. Proc Natl Acad Sci U S A 101:8186-91
Cryan, J F; Dalvi, A; Jin, S H et al. (2001) Use of dopamine-beta-hydroxylase-deficient mice to determine the role of norepinephrine in the mechanism of action of antidepressant drugs. J Pharmacol Exp Ther 298:651-7