The long-term goal of the proposed research is to understand the mechanisms that mediate neuronal migration in mammals. In the vertebrate embryo, neurons frequently migrate long distances to reach their final positions, where they assemble into complex networks that control physiology and behavior. Many human neurological disorders result when neurons either migrate aberrantly or fail to migrate. Therefore, it is essential to understand the mechanisms mediating migration of specific neuronal types, so that the causes of and potential remedies for human brain disorders can eventually be identified. Our studies may also impact efforts to induce stem cell-derived neurons to migrate accurately into brain regions damaged by injury or disease. The proposed work employs the migration of facial branchiomotor neurons (FBMNs) in the zebrafish and mouse hindbrain as a model for neuronal migrations in mammals. Previous work demonstrated that a transmembrane protein Strabismus (Stbm) was necessary for FBMN migration in zebrafish. Stbm has been well studied for its role as a component of the wingless/Wnt signaling pathway in mediating polarized cellular behaviors and patterning events in an epithelial cell layer (planar cell polarity/PCP) in flies and vertebrates. However, we have accumulated compelling preliminary evidence that, during FBMN migration, Stbm may function independently of other components of the Wnt/PCP signaling pathway. We therefore hypothesize that Stbm and Prickle1a (Pk1a), a cytoplasmic protein that potentially binds Stbm, use novel molecular and cellular mechanisms to regulate FBMN migration. We propose several approaches to uncover these mechanisms. First, the roles of various domains within Stbm, and of three genes that interact with stbm, during FBMN migration in zebrafish will be studied using gain- and loss-of-function approaches. Next, the identity of the cell type(s) in which Stbm and Pk1a functions are necessary for FBMN migration will be determined using loss-of-function and cell transplantation methods. Finally, the roles of Stbm and other PCP components in FBMN migration in mouse will be evaluated through detailed phenotypic analyses of mutant mice.

Public Health Relevance

The proposed studies of neuronal migration have two-fold significance. 1) Many human neurological disorders result from defective neuronal migration. Therefore, it is essential to understand the underlying mechanisms so that the causes of and potential remedies for these diseases can be identified. 2) An ongoing challenge in stem cell research is to understand how stem cell-derived neurons can be induced to migrate accurately into brain regions damaged by injury or disease. Our studies can therefore impact efforts to increase the efficacy of stem cell therapies to treat neuronal injury and disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS040449-08
Application #
7914155
Study Section
Special Emphasis Panel (ZRG1-MDCN-D (02))
Program Officer
Riddle, Robert D
Project Start
2000-07-15
Project End
2012-08-31
Budget Start
2010-09-01
Budget End
2011-08-31
Support Year
8
Fiscal Year
2010
Total Cost
$357,658
Indirect Cost
Name
University of Missouri-Columbia
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
153890272
City
Columbia
State
MO
Country
United States
Zip Code
65211
Gurung, Suman; Asante, Emilia; Hummel, Devynn et al. (2018) Distinct roles for the cell adhesion molecule Contactin2 in the development and function of neural circuits in zebrafish. Mech Dev 152:1-12
Allen, James R; Bhattacharyya, Kiran D; Asante, Emilia et al. (2017) Role of branchiomotor neurons in controlling food intake of zebrafish larvae. J Neurogenet 31:128-137
Glasco, Derrick M; Pike, Whitney; Qu, Yibo et al. (2016) The atypical cadherin Celsr1 functions non-cell autonomously to block rostral migration of facial branchiomotor neurons in mice. Dev Biol 417:40-9
Pan, Xiufang; Sittaramane, Vinoth; Gurung, Suman et al. (2014) Structural and temporal requirements of Wnt/PCP protein Vangl2 function for convergence and extension movements and facial branchiomotor neuron migration in zebrafish. Mech Dev 131:1-14
Sittaramane, Vinoth; Pan, Xiufang; Glasco, Derrick M et al. (2013) The PCP protein Vangl2 regulates migration of hindbrain motor neurons by acting in floor plate cells, and independently of cilia function. Dev Biol 382:400-12
Thoby-Brisson, Muriel; Bouvier, Julien; Glasco, Derrick M et al. (2012) Brainstem respiratory oscillators develop independently of neuronal migration defects in the Wnt/PCP mouse mutant looptail. PLoS One 7:e31140
Glasco, Derrick M; Sittaramane, Vinoth; Bryant, Whitney et al. (2012) The mouse Wnt/PCP protein Vangl2 is necessary for migration of facial branchiomotor neurons, and functions independently of Dishevelled. Dev Biol 369:211-22
Burroughs-Garcia, Jessica; Sittaramane, Vinoth; Chandrasekhar, Anand et al. (2011) Evolutionarily conserved function of Gbx2 in anterior hindbrain development. Dev Dyn 240:828-38
Bingham, Stephanie M; Sittaramane, Vinoth; Mapp, Oni et al. (2010) Multiple mechanisms mediate motor neuron migration in the zebrafish hindbrain. Dev Neurobiol 70:87-99
Qu, Yibo; Glasco, Derrick M; Zhou, Libing et al. (2010) Atypical cadherins Celsr1-3 differentially regulate migration of facial branchiomotor neurons in mice. J Neurosci 30:9392-401

Showing the most recent 10 out of 20 publications