? The limitations of radiographic visualization and the lack of consideration of the influence of stentt deployment on details of blood flow have limited stentt design to forms which are uniform and circularly symmetric. Yet some of the most important potential applications of stents such as in the treatment of aneurysms are inherently non-uniform and non-symmetric in nature. In this project, the design of innovative asymmetric stents and their deployment enabled by guidance with new high resolution x-ray image detectors are investigated. In particular, the limitations and accuracy in localizing the rotational orientation as well as the longitudinal distance of small asymmetric devices delivered by catheters within the vasculature under radiographic guidance are explored for the first time. This new capability for accurate localization will allow the implementation of new devices such as asymmetric, variable porosity stentts for treatment of cerebral aneurysms by modifying aneurysm blood flow characteristics. To optimize the new stentt design, flow reduction in aneurysms needed to induce thrombosis will be explored. Also details of flow and flow modification will be investigated using advanced theoretical and experimental methods. It is expected that this new capability should enable more rapid treatment of aneurysms with less chance of hemorrhage and decreased possibility for recurrence compared with existing procedures and additionally readily enable treatment of wide-necked and giant cerebral aneurysms for the first time. ? ?
Showing the most recent 10 out of 37 publications