There is a fundamental gap in our understanding of the mechanisms of the release of mitochondrial apoptogenic factors induced by elevated Ca2+ and by pro-apoptotic proteins. Our long-term goal is to establish the role of mitochondria in neuronal apoptosis. The objective of this study is to delineate the mechanisms of release of apoptogenic proteins from brain mitochondria initiated by elevated Ca2+ or by pro-apoptotic proteins. The central hypothesis of the proposed research is that an increased generation of reactive oxygen species, augmentation of lipid peroxidation, activation of phospholipase A2, and K+ influx in brain mitochondria are the major processes leading to the release of apoptogenic proteins induced by elevated Ca2+ or pro-apoptotic proteins tBID and BAX.
In Specific Aim 1 we will establish K+-dependent mechanisms of the Ca2+-induced swelling of brain mitochondria and release of apoptogenic proteins. Inhibitors of mitochondrial K+ channels and the adenine nucleotide translocase will be applied to isolated brain mitochondria or to cultured neurons to establish their role in the Ca2+-induced swelling, and release of apoptogenic proteins.
In Specific Aim 2 we will determine the extent to which an activation of mitochondrial K+ channels and the permeability transition contributes to the release of apoptogenic factors induced by pro-apoptotic proteins tBID and BAX. Inhibitors of the permeability transition and blockers of K+ channels will be used to identify their role in the release of the apoptogenic proteins.
In Specific Aim 3 we will establish the role of reactive oxygen species, lipid peroxidation and phospholipase A2 in the release of apoptogenic proteins induced by tBID and BAX. Various antioxidants and inhibitors of phospholipase A2 will be used to inhibit the release of apoptogenic proteins.
In Specific Aim 4 we will determine the role of caspases in the release of apoptogenic proteins from brain mitochondria exposed to tBID and BAX. Isolated brain mitochondria exposed to tBID and BAX and treated with recombinant caspases will be used to test this hypothesis. The proposed research lays the foundation for a better understanding of the molecular mechanisms of the permeabilization of the outer mitochondrial membrane induced by elevated Ca 2+ or pro-apoptotic proteins tBID and BAX and contributes to filling in a gap in our knowledge of these phenomena.
Showing the most recent 10 out of 19 publications