A damaging or pathological process that disrupts the continuity of axons in the adult mammalian central nervous system (CMS) often results in permanent disability due to the failure of injured axons to regenerate. Current therapeutic interventions are short of eliciting a robust regenerative response that leads to a decent degree of functional recovery. Recently, the emergence of neuronal bridging devices based upon tissue engineering principles offers new hope for the treatment and manipulation of CMS injuries and diseases. By engineering a controlled environment at the lesion site, neural bridging devices awaken the intrinsic ability of CMS axons to regenerate across and beyond the site of injury to reach their appropriate targets. The combined use of material scaffolds containing guidance cues with adhesive molecules and cells of selective properties further confers vitality and resilience to the devices. Our long-term goal is to develop a clinically applicable tissue-engineered neuronal bridging device to repair damaged CNS nerve tracts. The proposed project aims to construct and evaluate a tissue-engineered bridging device based upon a multi-filament entubulation approach in which bundles of ultra-thin filaments are entubulated into a semi- permeable biodegradable hollow fiber membrane sleeve. Our hypothesis is that such a bridging device will convey strong unidirectional guidance cues and define a well-controlled environment for regenerating axons, and therefore promote and guide axonal regeneration following spinal cord injury, leading to a greater degree of functional recovery compared to conventional neuronal bridging strategies.
Aim #1 is to evaluate the effect of the packing density of the filament bundles within the HFM entubulation sleeve on the directional outgrowth length and directionality of axons in vitro.
Aim #2 is to examine the efficiency of multifilament bridging device in promoting axonal outgrowth using a spinal cord hemisection model in vivo.
Aim #3 is to determine whether a combined strategy aimed at 1) enhancing directional regeneration across the lesion gap, and 2) inhibiting glial scar formation at the device-host interface will further promote axonal growth to the lumbar central pattern generator (CPG; an intact neural circuit located within the L1-2 segment that responsible for hindlimb locomotor function), resulting in both anatomical reconnection and functional recovery.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
7R01NS050243-06
Application #
8792737
Study Section
Special Emphasis Panel (ZRG1-BDCN-B (92))
Program Officer
Owens, David F
Project Start
2007-04-01
Project End
2014-09-30
Budget Start
2012-11-10
Budget End
2014-09-30
Support Year
6
Fiscal Year
2011
Total Cost
$159,889
Indirect Cost
Name
Virginia Commonwealth University
Department
Engineering (All Types)
Type
Schools of Engineering
DUNS #
105300446
City
Richmond
State
VA
Country
United States
Zip Code
23298
Wang, Hongxing; Zhang, Yi Ping; Cai, Jun et al. (2016) A Compact Blast-Induced Traumatic Brain Injury Model in Mice. J Neuropathol Exp Neurol 75:183-96
Wu, Xiangbing; Xu, Xiao-Ming (2016) RhoA/Rho kinase in spinal cord injury. Neural Regen Res 11:23-7
Deng, Lingxiao; Ruan, Yiwen; Chen, Chen et al. (2016) Characterization of dendritic morphology and neurotransmitter phenotype of thoracic descending propriospinal neurons after complete spinal cord transection and GDNF treatment. Exp Neurol 277:103-114
Wang, Hongxing; Liu, Nai-Kui; Zhang, Yi Ping et al. (2015) Treadmill training induced lumbar motoneuron dendritic plasticity and behavior recovery in adult rats after a thoracic contusive spinal cord injury. Exp Neurol 271:368-78
Walker, Chandler L; Wang, Xiaofei; Bullis, Carli et al. (2015) Biphasic bisperoxovanadium administration and Schwann cell transplantation for repair after cervical contusive spinal cord injury. Exp Neurol 264:163-72
Walker, Melissa J; Walker, Chandler L; Zhang, Y Ping et al. (2015) A novel vertebral stabilization method for producing contusive spinal cord injury. J Vis Exp :e50149
Deng, Ling-Xiao; Walker, Chandler; Xu, Xiao-Ming (2015) Schwann cell transplantation and descending propriospinal regeneration after spinal cord injury. Brain Res 1619:104-14
Liu, Nai-Kui; Deng, Ling-Xiao; Zhang, Yi Ping et al. (2014) Cytosolic phospholipase A2 protein as a novel therapeutic target for spinal cord injury. Ann Neurol 75:644-58
Wang, Xiaofei; Hu, Jianguo; She, Yun et al. (2014) Cortical PKC inhibition promotes axonal regeneration of the corticospinal tract and forelimb functional recovery after cervical dorsal spinal hemisection in adult rats. Cereb Cortex 24:3069-79
Zhao, Wen; Li, Xiaowei; Liu, Xiaoyan et al. (2014) Effects of substrate stiffness on adipogenic and osteogenic differentiation of human mesenchymal stem cells. Mater Sci Eng C Mater Biol Appl 40:316-23

Showing the most recent 10 out of 40 publications