GABAergic inhibition is a primary determinant of the activity of neostriatal projection neurons and recent evidence demonstrates that a significant fraction of this inhibitory control originates from the axon collaterals of the projection neurons themselves. The existence of a functional synaptic circuitry among projection neurons suggests a critical role in the regulation of the spatial and temporal pattern of activity of the neostriatum, and in particular in the control of the balance of activity between the functionally segregated output pathways (the""""""""direct"""""""" and """"""""indirect"""""""" pathways) of the neostriatum. To extend the understanding of the inhibitory circuitry of neostriatal projection neurons the first objective of the present proposal will be to investigate the connectivity and the biophysical properties of synaptic communication between the striato- nigral (direct) and striato-pallidal (indirect) neostriatal projection neurons with paired whole cell voltage and current clamp recordings in acute brain slices . The second major objective is to test the hypothesis that dopamine regulates synaptic transmission among projection neurons in a circuit dependent manner through two different receptor mechanisms. Our preliminary data demonstrate that synaptic transmission between a subset of pairs of projection neurons is enhanced by dopamine through DHike receptors while D2-like receptors suppress transmission between a complementary population of pairs. Considering the strict segregation of the two mechanisms demonstrated by our preliminary data, and the known projection pathway selective distribution of dopamine receptors, we hypothesize that the feedback circuitry of projection neurons contributes to the dopaminergic control of the relative activity of the direct and indirect pathways through differential modulation of synaptic connections of projection neurons of the two neostriatal output pathways. These questions will be investigated in electrophysiological and pharmacological experiments by obtaining in vitro paired recordings from projection neurons identified using single-cell RT-PCR profiling of the expression of enkephalin, substance P and the 5 main dopamine receptor subtypes. The basic cellular mechanisms responsible for the differential regulation of activity of the opponent output pathways of the neostriatum has important implications for the understanding of the pathophysiology of several neurological and psychiatric disorders including Parkinson's and Huntington's disease, schizophrenia and drug addiction. In particular, understanding the dopaminergic modulation of the neostriatal circuitry may facilitate the identification of novel, non-dopaminergic primary or adjunctive pharmacotherapies of Parkinson's disease and contribute to the improvement of non-pharmacological treatment modalities of the disorder.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS052370-04
Application #
7574450
Study Section
Sensorimotor Integration Study Section (SMI)
Program Officer
Sieber, Beth-Anne
Project Start
2006-03-01
Project End
2011-02-28
Budget Start
2009-03-01
Budget End
2010-02-28
Support Year
4
Fiscal Year
2009
Total Cost
$303,790
Indirect Cost
Name
Rutgers University
Department
Type
Organized Research Units
DUNS #
130029205
City
Newark
State
NJ
Country
United States
Zip Code
07102
Koos, Tibor; Tecuapetla, Fatuel; Tepper, James M (2011) Glutamatergic signaling by midbrain dopaminergic neurons: recent insights from optogenetic, molecular and behavioral studies. Curr Opin Neurobiol 21:393-401
Ibáñez-Sandoval, Osvaldo; Tecuapetla, Fatuel; Unal, Bengi et al. (2011) A novel functionally distinct subtype of striatal neuropeptide Y interneuron. J Neurosci 31:16757-69
Tepper, James M; Tecuapetla, Fatuel; Koós, Tibor et al. (2010) Heterogeneity and diversity of striatal GABAergic interneurons. Front Neuroanat 4:150
Ibanez-Sandoval, Osvaldo; Tecuapetla, Fatuel; Unal, Bengi et al. (2010) Electrophysiological and morphological characteristics and synaptic connectivity of tyrosine hydroxylase-expressing neurons in adult mouse striatum. J Neurosci 30:6999-7016
Tecuapetla, Fatuel; Patel, Jyoti C; Xenias, Harry et al. (2010) Glutamatergic signaling by mesolimbic dopamine neurons in the nucleus accumbens. J Neurosci 30:7105-10
Tecuapetla, Fatuel; Koós, Tibor; Tepper, James M et al. (2009) Differential dopaminergic modulation of neostriatal synaptic connections of striatopallidal axon collaterals. J Neurosci 29:8977-90
Tepper, James M; Wilson, Charles J; Koos, Tibor (2008) Feedforward and feedback inhibition in neostriatal GABAergic spiny neurons. Brain Res Rev 58:272-81