Circadian rhythms have been observed in nearly all organisms from cyanobacteria to humans. These rhythms are under the control of the """"""""circadian clock,"""""""" a genetically determined, endogenous timekeeper that can adjust to environmental cues like the day/night cycle. The circadian rhythm most familiar to us is our own sleep/wake rhythm, but there is circadian rhythmicity in many aspects of physiology including alertness, hormone production and drug efficacy. Recent studies showed that 2-10% of genes expressed in most tissues exhibit robust circadian oscillations, suggesting that the circadian clock plays important roles in our physiology. The mammalian circadian rhythms are regulated by a molecular oscillator (""""""""circadian clock"""""""") constructed from a self-sustaining, cell-autonomous transcriptional negative feedback loop. Period (Per) genes are essential for the mammalian circadian clock and PER proteins are rate-limiting factors for the circadian negative feedback loop. Thus, one of the most crucial tasks to advance our understanding of the clock is to uncover how PER proteins are regulated. We propose to study two aspects of posttranslational regulation of mouse PER (mPER) proteins: phosphorylation and degradation. We will characterize defects of circadian clock function in two types of genetically modified mice: one expressing a transgene to disrupt the function of likely kinases for mPER, and the other a knockout for a factor likely to target mPER2 for proteasomal degradation. Because PER regulation is so fundamental to the clock mechanism, the results of our studies will deepen our understanding of all aspects of circadian physiology, from sleep to human diseases associated with clock malfunction. Our discoveries will also provide a better framework for the development of treatments to combat human disorders associated with clock malfunction such as manic depression, chronic sleep disorder and seasonal affective disorder.
Showing the most recent 10 out of 12 publications