Excessive activation of the N-methyl-D-aspartate receptor (NMDAR) is a key event in excitotoxicity and largely responsible for neuronal cell death after brain ischemia. Specifically, NMDAR-mediated Ca2+ influx and K+ efflux have been linked to necrosis and apoptosis. NMDAR activities are inhibited by NR3A, a newly identified NMDAR subunit that is abundantly expressed in neonatal neurons but diminished in older cells with increased neuronal vulnerability to excitotoxicity. Whether NR3A contributes to the neonatal brain tolerance is an important but undetermined question. We hypothesize that NR3A expression in the developing brain plays an important neuroprotective role in preventing neuronal cell death induced by excitotoxic insults. NMDAR-associated neuronal death will be studied in wild type (WT) and NR3A-deficient (NR3A""""""""'"""""""") cultured mouse cortical neurons, in HEK293 cells transfected with NR subunits, and in neonatal and adult ischemic stroke models of WT and NR3A""""""""'"""""""" mice.
Specific Aim 1 will examine the inhibitory effects of NR3A expression on NMDA-induced membrane currents and excitotoxicity. Patch clamp experiments will examine a reduced voltage-dependent Mg2+ block of NMDAR by NR3A expression, and test the hypothesis that NR3A selectively attenuates the NMDA outward K+ (NMDA-K) current as a novel mechanism of NR3A-induced neuroprotection. Mild and severe NMDA insult-induced apoptotic and necrotic death will be examined in cultured cells expressing different levels of NR3A. Effects of NR3A on intracellular Ca2+ ([Ca2+]i), K+ ([K+]j), caspase activation, and their relationships to suppressed NMDA currents and cell death will be assessed.
Specific Aim 2 will examine the neuroprotective effect of NR3A against hypoxia- and ischemia-induced cell death. The neonatal brain is more tolerant of hypoxic/ischemic injury than the adult brain, but the underlying mechanism is not well defined. The decline of NR3A expression during brain maturation parallels the weakening of tolerance. We will test the hypothesis that the high and low levels of NR3A expression correspond to the different ischemic tolerances of neonates and adults. The neuroprotective role of the NR3A subunit will be examined in hypoxia-induced cell death in vitro as well as in ischemic stroke models of WT and NR3A""""""""'"""""""" mice. Based on the unique inhibitory effect of NR3A on NMDAR activities, its neuroprotective function in the developing brain is a logical but untested hypothesis. The investigation will provide novel evidence for an important endogenous self-defense mechanism which may underlie neonatal tolerance to brain ischemia. The findings from this investigation may also suggest a new strategy of receptor therapy in prevention and treatment of stroke.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS057255-04
Application #
7999235
Study Section
Developmental Brain Disorders Study Section (DBD)
Program Officer
Silberberg, Shai D
Project Start
2007-09-01
Project End
2013-11-30
Budget Start
2010-12-01
Budget End
2013-11-30
Support Year
4
Fiscal Year
2011
Total Cost
$265,825
Indirect Cost
Name
Emory University
Department
Anesthesiology
Type
Schools of Medicine
DUNS #
066469933
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Lee, Jin Hwan; Zhang, James Ya; Wei, Zheng Zachory et al. (2018) Impaired social behaviors and minimized oxytocin signaling of the adult mice deficient in the N-methyl-d-aspartate receptor GluN3A subunit. Exp Neurol 305:1-12
Lee, Jin Hwan; Wei, Ling; Gu, Xiaohuan et al. (2016) Improved Therapeutic Benefits by Combining Physical Cooling With Pharmacological Hypothermia After Severe Stroke in Rats. Stroke 47:1907-13
Francis, Kevin R; Wei, Ling; Yu, Shan Ping (2015) SRC tyrosine kinases regulate neuronal differentiation of mouse embryonic stem cells via modulation of voltage-gated sodium channel activity. Neurochem Res 40:674-87
Gu, Xiaohuan; Wei, Zheng Zachory; Espinera, Alyssa et al. (2015) Pharmacologically induced hypothermia attenuates traumatic brain injury in neonatal rats. Exp Neurol 267:135-142
Wei, Zheng Zachory; Gu, Xiaohuan; Ferdinand, Anwar et al. (2015) Intranasal delivery of bone marrow mesenchymal stem cells improved neurovascular regeneration and rescued neuropsychiatric deficits after neonatal stroke in rats. Cell Transplant 24:391-402
Wei, Zheng Zachory; Yu, Shan Ping; Lee, Jin Hwan et al. (2014) Regulatory role of the JNK-STAT1/3 signaling in neuronal differentiation of cultured mouse embryonic stem cells. Cell Mol Neurobiol 34:881-93
Liu, Xinfeng; Ye, Ruidong; Yan, Tao et al. (2014) Cell based therapies for ischemic stroke: from basic science to bedside. Prog Neurobiol 115:92-115
Song, Mingke; Yu, Shan Ping (2014) Ionic regulation of cell volume changes and cell death after ischemic stroke. Transl Stroke Res 5:17-27
Liu, Xian-Bao; Wang, Jian-An; Ji, Xiao-Ya et al. (2014) Preconditioning of bone marrow mesenchymal stem cells by prolyl hydroxylase inhibition enhances cell survival and angiogenesis in vitro and after transplantation into the ischemic heart of rats. Stem Cell Res Ther 5:111
Chen, Dongdong; Song, Mingke; Mohamad, Osama et al. (2014) Inhibition of Na+/K+-ATPase induces hybrid cell death and enhanced sensitivity to chemotherapy in human glioblastoma cells. BMC Cancer 14:716

Showing the most recent 10 out of 33 publications