Preterm birth and term birth asphyxia result in brain injury from inadequate oxygen delivery and constitute a major and growing worldwide health problem. Estimates of the annual societal economic burden for the preterm population in the United States exceed $26.2 billion. Poor outcomes are noted in a majority of very premature (< 25 weeks gestation) newborns resulting in death or life-long morbidity with motor, sensory, learning, behavioral and language disabilities that limit academic achievement and well-being. Limited progress has been made to develop therapies that improve neurologic outcomes. The overall objective of this proposal is to understand the impact of early brain injury on activity-dependent brain development and cortical plasticity, in order to develop new treatments that will optimize repair and recovery following brain injury. In the first cycle of this grant, we studied a small animal model of early cerebral hypoxic-ischemic (HI) brain injury to show that subplate neurons, a transient population of cortical neurons with central roles in the formation of cortical circuits, are among the most vulnerable cells. Following early HI injury, animals display reduced cortical plasticity. In the present proposal, we focus on early, spontaneous patterned brain activity necessary for normal activity-dependent development and refinement of cortical circuits. Activity directly influences a myriad of developmental processes including gene and protein expression, cell differentiation, migration, programmed cell death, synapse formation and circuit refinement. Activity arises spontaneously in many areas of the developing nervous system, often taking the form of bursts followed by periods of silence, a characteristic feature of the preterm electroencephalogram (EEG) -- trac discontinu. These bursts of activity are not random, they contain nested oscillations in specific frequency bands, some of which are below standard filters used for human clinical EEG and thus have not been well appreciated. Early brain injury reduces spontaneous neuronal activity. Our central hypothesis is that adverse neurodevelopmental outcome following early HI brain injury results in large part from impaired activity-dependent development of neurons and cortical circuits. Manipulation of early activity may be a new strategy to augment repair and recovery following early brain injury.

Public Health Relevance

Brain injury in the newborn is a common problem following difficult or premature birth. The overall goal of this project is to understand the impact of newborn brain injury on brain development, activity and plasticity. Understanding how injury affects these fundamental processes will provide deeper insight into the mechanisms of developmental disability and a model to guide treatments that promote repair and recovery of brain function.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS060896-09
Application #
9269621
Study Section
Developmental Brain Disorders Study Section (DBD)
Program Officer
Koenig, James I
Project Start
2007-12-01
Project End
2018-05-31
Budget Start
2017-06-01
Budget End
2018-05-31
Support Year
9
Fiscal Year
2017
Total Cost
$378,631
Indirect Cost
$139,747
Name
University of California San Francisco
Department
Pediatrics
Type
Schools of Medicine
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94118
Sheikh, Aminah; Meng, Xiangying; Liu, Ji et al. (2018) Neonatal Hypoxia-Ischemia Causes Functional Circuit Changes in Subplate Neurons. Cereb Cortex :
Mikhailova, Alexandra; Sunkara, Naveena; McQuillen, Patrick S (2017) Unbiased Quantification of Subplate Neuron Loss following Neonatal Hypoxia-Ischemia in a Rat Model. Dev Neurosci 39:171-181
Paredes, Mercedes F; James, David; Gil-Perotin, Sara et al. (2016) Extensive migration of young neurons into the infant human frontal lobe. Science 354:
Ranasinghe, Sumudu; Or, Grace; Wang, Eric Y et al. (2015) Reduced Cortical Activity Impairs Development and Plasticity after Neonatal Hypoxia Ischemia. J Neurosci 35:11946-59
Spadafora, Ruggero; Gonzalez, Fernando F; Derugin, Nikita et al. (2010) Altered fate of subventricular zone progenitor cells and reduced neurogenesis following neonatal stroke. Dev Neurosci 32:101-13
Failor, Samuel; Nguyen, Vien; Darcy, Daniel P et al. (2010) Neonatal cerebral hypoxia-ischemia impairs plasticity in rat visual cortex. J Neurosci 30:81-92
Arnold, Thomas D; McQuillen, Patrick S (2010) From death to recovery following hypoxia ischemia: if TGFbeta is a central regulator, is integrin beta8 the switch? Neurotox Res 17:418-20